
PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 1

Information-Provenance Clocks
Dan Fu and Ross Rheingans-Yoo

Harvard School of Engineering and Applied Sciences
dfu@college.harvard.edu || rry@eecs.harvard.edu

Abstract—The study of time, clocks, and causal order-
ings of events in distributed systems has been a subject
of study within the field of computer science for almost
forty years, in at least some reference frame. Nevertheless,
relatively little work has been done to investigate the
practical considerations of designing a distributed ordering
system with the goal of enforcing a causally consistent
ordering of events. We formalize the closely-linked con-
cepts of ordering schema and order-control policy. We
present an extension of Lamport’s venerable vector-clock
ordering schema, designed to reduce the frequency with
which spurious information is integrated into clock vectors.
We demonstrate that in certain systems that use such
vector clocks as the basis for their order-control policy,
this modification drastically reduces the incidence of false-
positive identifications of mis-ordered events.

I. INTRODUCTION

One fundamental capability often desired in dis-
tributed systems is ordering, the ability to specify
that certain events ‘occurred before’ or ‘occurred
after’ other events. However, Lamport demonstrated
that it is impossible in general to found such specifi-
cation in objective, physical terms [1], requiring that
ordering schemata must in general be partial order-
ings specified logically, within a given distributed
system. For this reason, we three possible relations
between two events a, b:
• a < b: a must precede b; b must succeed a.
• a ≷ b: a may precede b; a may succeed b; b

may preceded a; b may succeed a.
• a < b: a must succeed b; b must precede a.

NB: When presented in boldface, these expressions
refer to the relations of ‘must’ and ‘may’ with
respect to a particular ordering schema. To instead
refer to causal constraints on which events ‘must’ or
‘may’ come before others, we qualify the relation as
‘causally may precede’ and ‘causally must precede’,
without boldface.

We define a consistent ordering schema to be one
in which “a causally must precede b” =⇒ “a must

precede b. We may also desire that in most cases,
the converse holds, though as we will see below,
this is difficult to achieve in general in practice.

A. Logical Clocks

Lamport [1] introduced logical clocks as an order-
ing schema which assigns integer numbers to events,
such that:
• any two events which occur within the same

process are assigned distinct numbers, with the
higher number assigned to the later-occurring
event

• the sending and receipt of a message, respec-
tively, are assigned distinct numbers, with the
higher number assigned to the receipt event.

These conditions are achieved by specifying that
each process maintains a logical clock counter
which is incremented on every ‘internal event’
occurring local to the process. (Such an event is
then assigned the new value as its timestamp.) Fur-
thermore, on the receipt of any message sent with
timestamp Tm (according to the sender’s clock), this
counter is advanced from Cj to max[Cj+1, Tm+1],
assigning the new value as the timestamp of the
receipt event. In this schema, we say that an event
a must precede an event b iff the timestamp of a
is less than b.

However, logical clocks have two significant dis-
advantages. First, integer timestamps present an
over-specified model of the “happened before” par-
tial ordering: it may assign a must precede relation
to events which causally may have occurred in either
order.

Second, logical clocks often exhibit gaps between
the timestamps of subsequent events in a process.
This makes it impossible in general to use times-
tamps to determine on a process-local level whether
a remote event (which it may later receive) has

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 2

occurred which must precede an event it intends
to process locally.

Together, these limitations mean that logical
clocks provide no more than a rough ordering of
one possible sequence of events, which gives no
insight that can drive a consistent ordering policy
from within the system.

B. Vector Clocks

One schema introduced to address the limitations
of over-specification and spurious counter gaps is
vector clocks, which assign to events a vector of
logical-clock values, each component corresponding
to a single process. Each process, then, maintains
a vector, incrementing its own component on in-
ternal events, and advancing other components as
necessary so that, for any message received with
timestamp ~T by a process j with clock ~C, the clock-
vector becomes C ′ with:

∀i, C ′i ≥ max[Ci, Ti] (1)
C ′j = Cj + 1 (2)

In this schema, an event a must precede an event
b iff a ‘dominates componentwise’ b, i.e.:

• ∀i, ai ≤ bi
• ∃j : aj < bj .

Note that, in any possible run, no process will
advance the component corresponding to another
process beyond the value of that process’s com-
ponent in its own clock-vector. It follows that any
events with timestamps with identical values in a
process i’s component causally may have occurred
without any intervening events from process i.

Additionally, any event b with a timestamp dom-
inating another’s a causally must have occurred on
a machine that had received a message from (a
machine that had received a message from. . .) the
machine that produced event a. Under the assump-
tion that any message a machine receives causally
affects subsequent messages, a will thus precede
b in any run of the system, and we specify that
a must precede b. Correspondingly, any pair a, b
which is incomparable—i.e., neither dominates the
other—may have occurred in either order (in at least
some run of the system), and we specify that a may
precede b.

II. VECTOR-BASED ORDER-CONTROL POLICY

We consider ordering schemata separately from
ordering policy. The former, as discussed above,
represents a posited (partial) order relation between
events; the latter, which we have not yet discussed,
refers to a systemwide policy for scheduling and
deferring processing tasks to avoid processing mes-
sages in an undesired order. We further separate
ordering policy into order-control policy (OCP)
and scheduling. Order-control policy identifies when
certain tasks cannot be processed; scheduling de-
termines, subject to such constraints, which will
be. Further discussion of scheduling in distributed
systems is beyond the scope of this paper.

A. Order-control policy
The simplest order-control policy is the maxi-

mally permissive policy (or the null policy), which
allows any task to be processed at any time. This
policy makes no guarantees about the order in which
tasks are processed, and may, for example, process
a communication event b before another event a
even if a must precede b (either according to the
ordering schema, or causally). Ordering consistency,
if required, must thus be guaranteed by some mech-
anism independent of the clock system.

By contrast, we define a proper order-control
policy to be an OCP in which event b is never
processed before event a if a must precede b. Under
such a policy, if a1 and a2 are sent from A to B
and C respectively and a1 must precede a2, and a2
causes b3 to be sent from C to B, then the OCP
will guarantee that B handles a1 before it handles
b1, regardless of the order in which messages arrive.

Intuitively, the practical effects of such a policy
will depend on the dynamics of the underlying
network. In the foregoing work, we consider the
following network details:
• We assume that the network never drops mes-

sages.
• We assume that all messages are delivered

correctly.
• We assume that the network never reorders

messages between two participants.
We allow, however, for messages or machines to be
delayed arbitrarily; our only liveness condition is
that all sent messages get delivered eventually.1 In

1Okay, we assume that all messages get delivered before any client-
side message queue overflows and crashes the machine it lives on.

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 3

some cases, the policies under discussion will bene-
fit from a liveness assumption that all pairs of nodes
exchange communication with some frequency; we
will note any such assumption explicitly when we
invoke it.

B. Minimal proper OCPs for vector-based clocks
Given a vector-based ordering schema with the

condition that messages sent from A to B must
succeed each other in order, we implement the
minimal proper OCP as follows:
• Never handle a message b with vector ~b if
~b dominates the vector ~ai of any unhandled
queued message a. (Recall that if ~b > ~ai, then
a must precede b.)

• Never handle a message b with vector ~b if ~b
dominates any vector ~ainfi the minimal vector
which could possibly be received next from
node i. (This will be the vector last received
from i, incremented in the ith component.)

This policy is proper because it prevents any in-
stance in which a message ai is received and its
handling must precede the handling of b, which
has already occurred. It is minimal because each rule
only prevents the handling of messages which must
succeed other messages either queued or potentially
to-be-received (but which may still be received).

C. Examples
1) Minimal proper OCP for logical clocks:

If we take logical clocks as our ordering schema
(as described above), then this policy may be imple-
mented by tracking, for each conversation, the ‘least
next timestamp’ (LNT), which is the timestamp of
the first-queued message for any conversation with
a queue, and 1+ the last-received timestamp (of that
conversation) otherwise. Then a message may only
be processed if its conversation has a minimal LNT.

Assuming that all pairs of nodes converse with
some frequency, no node will be blocked indef-
initely, because eventually any conversation will
receive enough messages to move it out of the
minimal position where it blocks the others. How-
ever, if one node stops sending messages, all other
nodes will eventually become blocked, as all other
conversations’ LNTs will advance until they pass
that of the stopped conversation.

2) Minimal proper OCP for vector clocks:

If use vector clocks instead (as described above),
then each node will instead retain a least next vector,
and restrict processing only to conversations of
with LNVs along the frontier of R-minimal LNVs,
where R is the must succeed relation. As vector
dominance has a wider allowance for incomparabil-
ity than the almost-well-ordered integers, this will
frequently result in multiple unblocked options to
process next, unlike in the case of logical clocks.

Additionally, the OCP may be able to recover
if one node stops sending messages indefinitely.
Specifically, it will do so in the case of the dis-
appearance of node i iff all nodes have the same
value in the ith component of their logical clocks.
This situation arises naturally before i has sent any
messages—and so the system can begin processing
messages before all nodes have come online—or
can be arranged artificially, by allowing a node
to send multiple messages with vectors with the
identical value in its own component.

III. INFORMATION-PROVENANCE CLOCKS

A. (More) Granular Vector Clocks

Considering the motivation of OCP design, a
natural extension of vector clocks is a schema which
traces causal links more closely. A fundamental
assumption of the vector clock schema as formu-
lated above is that any piece of information that
a process receives can causally affect any piece
of information that the process subsequently sends.
(This assumption informs our decision about when
to roll vectors forward to ‘cover’ received times-
tamps, i.e., on every receipt.) While this assumption
may be valid in some cases, it might be quite far
from the truth in others. If so, then vector clocks
run the risk of incrementing clock values far too
often. This can create gaps where they need not
logically exist, over-specifying the history recorded,
and makes it easy for the minimal proper OCP to
become blocked.

Instead, we propose associating separate clock
vectors (information-provenance clocks) to distinct
pieces of information (or sets of information) that
are unlikely to affect each other, even if located
within a single process. If clock values are advanced
only when one piece of information explicitly in-
fluences another, then ‘most’ clock instances within

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 4

a process will be unaffected by ‘most’ messages
received. We may wish2 that, if the separation of
clocks is sufficiently granular, any clock advances
will correspond to the reliance of one value on all
influences indicated in the vector being advanced to.
If so, then we can minimize the number of receipts
which the minimal proper OCP blocks.

B. Disentangling separate ‘conversations’
In particular, we hypothesize that information-

provenance clocks should allow ‘side conversations’
to occur unhindered by one or more processes
‘flooding’ a system with unrelated messages. Con-
sider a system under the minimal proper vector-
based OCP with three processes, A, B, and C, and
suppose that A is flooding the system with many
messages, while B and C are attempting to send
unrelated messages to each other at a slower rate.
Further suppose that B has received n messages
from A, but that C has not yet received (or not yet
processed) any messages from A.

Now consider what happens when B tries to send
a message to C. If A, B, and C are using the
traditional vector clocks, then B’s vector clock will
have a value of at least n in A’s component, where
C’s vector clock will have a much lower value.
When B tries to send a message to C, C will
infer a gap in its communication with A. Under the
proper-OCP constraint, C will be disallowed from
processing B’s message until it has processed up to
n of A’s.

Now consider the same scenario with
information-provenance clocks. If we know
ahead of time that the messages B and C will
be sending to each other are not affected by the
messages sent between A and B or A and C, then
we can keep one information-provenance clock
each for the communication channels between
A/B, A/C, and B/C. In this scenario, B’s B/A
clock will have a value for A of at least n, but
its B/C will not have that A value. As a result,
when B sends a message to C, C has no reason
to believe that it has missed critical information
from A and can process the message (within its
messages-from-B logic) without worrying about

2We conjecture, but do not here prove, that some information-
dependence structures cannot fully satisfy this condition under any
granularization in this model. Nevertheless, we conjecture that finer
granularizations will, in general, reduce the frequency of spurious
clock gaps.

receiving one from A that must precede the
message from B.

Additional clocks, however, impose overhead on
systems by requiring additional storage space and
more-involved computations to update appropri-
ately. We wish to understand the effect of clock
granularity on side conversations by studying the
character of clock gaps and blocking messages in a
more-granular schema.

IV. SCALE MODEL SIMULATION

A. Overview

To evaluate the effect of clock granularity on
clock gaps, we constructed a scale model of
a distributed system implementing information-
provenance clocks. This model will simulate mul-
tiple processes running on separate machines, at
different speeds (a certain number of steps per sec-
ond, determined at initialization). Each process will
manage multiple distinct ‘threads’, each handling its
communications with one other node, protected by
separate information-provenance clocks.

On each timestep, a process will randomly choose
a message queue from those not blocked by OCP.
If the queue is empty, the process will randomly
choose to do an internal action (which increments
its internal clock counter) or an external action
(by sending a vector-stamped message to the node
on the other end of the channel). If the queue is
not empty, the process will simply handle the first
message from the queue, applying the appropriate
updates to the appropriate internal clocks. Addition-
ally, processes occasionally engage in ‘crosstalk’
from one thread to another, which rolls the target’s
clock vector forward to cover the source’s.

In this setting, we are able to vary a number of
experimental variables to observe their effect on the
traces that the model produces, specifically in terms
of the frequency with which messages are blocked
by OCP.

B. Simulating Granularity

To examine the effect of granularity in the system
design, we used three different setups, each using 5
processes sending messages to each other:
• Each node uses a single vector for all of its

conversations. (This is the traditional vector-
clock model.)

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 5

• Each node uses two vectors: one vector for
the conversations with the two nodes to its
immediate left, and another for the two nodes
to its right.

• Each node uses a separate vector for each
conversation.

To model the ‘actual’ granularity in the structure
of the data processed, we introduce the notion of
random crosstalk. We assume that most messages
that processes send over their channels only affect
the information directly associated with that channel
by the information-provenance clock, but that mes-
sages occasionally draw from more than one chan-
nel on the source machine. When a process sends
a message, it will, with some probability, choose
a message it has received from another process to
‘influence’ the outgoing message. When so, it rolls
the vector of the outgoing channel forward to cover
the source of the influence. In our tests, we use three
different probabilities for crosstalk to occur on each
send event: 0.9, 0.5, 0.1, to simulate information that
is highly-interconnected, information that is mod-
erately connected, and information that is highly
independent, respectively.

C. Speed Distribution

Another major experimental variable we manipu-
late is the relative speed of different machines. We
are primarily interested in two cases - when all the
machines are around the same speed, and when one
machine is faster than the others. We test the case of
when the speeds of the machine are relatively close
to each other by randomly assigning each machine
a speed of 4, 5, or 6 steps per second, and test the
case of one machine being faster than the rest and
flooding the network by randomly assigning all n−1
‘slow’ machines a speed of 1, 2, or 3 steps a second,
and assigning one ‘fast’ machine a speed of 6 steps
a second. We also test a uniform case where all
machines run at speed 6.

D. Policy Strictness

Lastly, test two different order-control policies.
One policy, the strict policy, is the minimal proper
OCP as described above. The second, which is not
a proper OCP, only considers a message blocked if
there is a queued message whose vector it domi-
nates.

Our scale simulation implements the difference in
these two policies by allowing processes to peek at
the head of their message queues. The processes can
see the vector clock associated with a message and,
by peeking at the heads of all the other message
queues, determine the must succeed-minimal sets
of LNVs. The assumption underlying this model is
that processing a message is costly relative to peek-
ing and scheduling; the fundamental unit of time in
a step represents the amount of time necessary to
process a message and do the work associated with
that message.3

E. Output Variables
We look primarily at one output variable: for each

process, the fraction of the time that the process
cannot handle the message it intends to because it
is blocked by another message. We choose to use
this indicator because it encapsulates how often a
process chose to handle a message but couldn’t. As
such, it acts as a proxy measurement for how badly
timing constraints hinder progress.

V. RESULTS

The results of our experiments are shown in Figs.
1 and 2. We report the fraction of intended message-
handles which are blocked by order-control pol-
icy, averaged across twelve 5-minute runs of
each model, which each correspond to 1200-1800
timesteps4 on each of the 5 machines.

The biggest factor affecting these ratios are the
order-control policy. When processes use a strict
policy, wherein they can only handle a message if
they know that they cannot receive a message that
must precede it, processes can spend up to 80%
of their time in a blocking state. When they use
a more lenient policy, they tend to spend no more
than 10% of their time in a blocking state in the very
worst case; when there is not a single fast process
flooding the network, they tend to spend less than
10% of their time in a blocking state.

3It is worth noting that this assumption is not necessarily valid for
all systems. The limiting factor in some systems might be the time
it takes for a stream of messages to be read, or the time it takes a
message to travel from machine to machine; in such a system, the
assumption that message processing is costly relative to scheduling
would not hold.

4The exception is the ‘bimodal’ case, where the fast machine has
approximately 1800 timesteps and the slow machines have 300-900
each.

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 6

Fig. 1. Blocking ratios for models running with a strict OCP. Left/center/right: uniform rates, variable rates, bimodal rates.
Top/middle/bottom: crosstalk p = 0.1, 0.5, 0.9. Blue: maximally granular (one vector per channel). Purple: one vector per two channels.
Red: one vector per process / traditional vector clocks.

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 7

Fig. 2. Blocking ratios for models running with a non-strict OCP. Left/center/right: uniform rates, variable rates, bimodal rates.
Top/middle/bottom: crosstalk p = 0.1, 0.5, 0.9. Blue: maximally granular (one vector per channel). Purple: one vector per two channels.
Red: one vector per process / traditional vector clocks.

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 8

Fig. 3. Detail of subplots (2a) and (2d) from Figure 2 above. Top: low rate p = 0.1 of crosstalk. Bottom: moderate rate p = 0.5 of crosstalk.
In both cases, all processes are running at the same speed. Each bar reports an average of twelve 5-minute runs, including approximately
1800 timesteps per process per run. Blue: maximally granular (one vector per channel). Purple: one vector per two channels. Red: one
vector per process / traditional vector clocks.

When processes use a strict order-control pol-
icy, it is not clear whether information-provenance
clocks have a discernable effect on the amount of
time processes spend in a blocking state; because
the fraction of time spent blocked is so high, there
is relatively high variance in our results, and it
is difficult to draw conclusions about the effect
of using information-provenance clocks over vector
clocks. In some cases, such as when there is little
crosstalk and no variation in machine speed (Fig.
1a), the information-provenance clocks appear to
offer a slight advantage over vector clocks. In most
other cases, however, the information-provenance
clocks perform similarly to vector clocks.

The more lenient ordering policy is much more
promising. Under this regime, processes only con-

sider a message blocked if they have received (but
not yet processed) another message that must pre-
cede it. Here, the information-provenance clocks
vastly outperform vector clocks. In the setups where
the machines are proceeding at uniform rates (Figs.
2a, 2d, and 2g), the systems using information-
provenance clocks spend orders of magnitude less
time in blocking states than their counterparts us-
ing vector clocks. The magnitude of these ad-
vantages carry over to the case of low crosstalk
and variable machine speeds and are reduced, but
remain significant in the cases of moderate or
near-constant crosstalk. Even when there is sin-
gle process flooding the network with messages,
information-provenance clocks still enjoy a signifi-
cant advantage over vector clocks.

PREPARED FOR CS262: DISTRIBUTED SYSTEMS, HARVARD UNIVERSITY, 9 MAY 2016. 9

It is worth studying some of these graphs in
more detail to more deeply understand the dy-
namics driving blocking states. Consider Figs. 2a
and 2d (expanded in Fig. 3). There is virtually no
difference between blocking rates for the systems
using vector clocks, even though crosstalk increases
five-fold from 2a to 2d. However, blocking rates
do increase for the systems using information-
provenance clocks; in other words, the information-
provenance clocks adapt to independence of their
data.

Interestingly, the systems using the most granular
formulation of the information-provenance clocks
perform similarly under high levels of crosstalk to
the systems using a moderately granular formulation
of the information-provenance clocks under low
levels of crosstalk. This suggests a close relationship
between those two cases - in the former case,
crosstalk forces almost every outgoing message to
be affected by two communication channels; in
the latter case, this is formalized by the setup of
the information-provenance clocks. Note that either
case is still two steps removed from systems using
vector clocks, where each outgoing piece of infor-
mation is implicitly affected by four communication
channels.

VI. CONCLUSION

Inquiry is certainly warranted into the question of
how ordering schemata interact with order-control
policy in real systems, but our experimental results
suggest that information-provenance clocks show
promise in reducing blocking overhead in systems
which desire weak-to-moderate order-control guar-
antees. (Our results are inconclusive in the regime
of strong order-control guarantees.)

Further research might investigate whether the
high blocking overhead required by a strictly proper
order-control protocol might be reduced by enabling
nodes to send periodic or demand-driven ‘update
requests’ to other nodes, prompting them to roll
their shared channel’s vector forward far enough
to unblock the requester’s other threads. In such
a system, we would expect overall blocking load
to decrease, and for similar results to emerge as
observed in the weak order-control regime, with
respect to the benefits of clock granularity.

Another question of interest is whether the ben-
efits of information-provenance clocks persist in

systems where the cost of scheduling and message
inspection is a first-order consideration, in contrast
to the regime we simulated, in which message-
handling costs dominate.

One application for which we believe granular
information-provenance clocks to be particularly
apt is in distributed structured databases, especially
graph databases. In this setting, the model of nodes
carrying on separate conversations with occasional
crosstalk approaches reality quite cleanly, consider-
ing a graph sharded across a network of nodes, after
being organized by some clustering algorithm. The
fine details, of course, go beyond our simple ex-
periments, though we expect our main result—that
granularity reduces blocking load—to generalize.

ACKNOWLEDGEMENTS

We wish to thank Jim Waldo, both for teaching
an excellent course in distributed systems that mo-
tivated this research, and for steering us away from
a proposed project concerning distributed holomor-
phic cryptography which was, to be frank, unlikely
to end in any way but tears. We also wish to
thank Margo Seltzer, for introducing us to the poly-
syllabic word ‘provenance’, and James Mickens,
whose course in Systems Security precipitated the
beginning of a fruitful academic partnership.

REFERENCES

[1] L. Lamport. Time, clocks, and the order of events in a distributed
system. C. ACM, 21(7):558–565. Jul 1978.

[2] Ö. Babaoğlu, K. Marzullo. Consistent global states of distributed
systems: Fundamental concepts and mechanisms. In Distributed
Systems, 2nd ed. pp. 55–96. ACM Press 1993.

