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Abstract

We present cambridge, the first technique for evolutionary analysis of dynamic

graphs via a community-attribute graphmodel. Community-attributemodelshave

been shown to be superior to models conventionally used for evolutionary anal-

ysis, particularly in modeling community structures in networks where commu-

nities exhibit dense overlaps. Thus, our use of a community-attribute model for

analysis of a bibliographic network evolving in time allows us to observe not only

the evolution of discrete clusters, but also the evolution of the ‘core’ of nodes that

are strongly linked to multiple communities simultaneously.

In particular, our approach allows us to observe and quantify how the sibling

communities resulting fromcommunity-splitting events share and compete for ex-

ternal intercommunity influence inherited from parent communities. We present

evidence that indicates that in such splitting events, highly-connected nodes that

were part of the parent networks ‘strong intercommunity ties’ become concen-

trated in the siblings’ intersection, whereas highly-connected nodes that are part

of ‘weak intercommunity ties’ are dispersed to the individual sibling communities.

Wediscuss the implications of our findings for thefieldof evolutionary graph

analysis and address the evident promise of dynamic community-attributemodels

in providing fully generative models for dynamic networks.
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The first challenge for computing science is to
discover how to maintain order in a finite, but
very large, discrete universe that is intricately
intertwined.
And a second, but not less important challenge is
how to mould what you have achieved in solving
the first problem, into a teachable discipline.

Edsgar W. Dijkstra

1
Introduction and Inquiry

How do populations form connections? How do those connection struc-
tures evolve as the populations grow?

Thenascentfieldofnetwork structure theoryhas endeavored toaddress these
questions—with approaches that have shifted dramatically as new computational
and mathematical technology has enabled algorithmic study of network patterns
observed in the real world.

While some computer scientists have sought to develop expressive models
for describing the structures observed in graphs, others continue to investigate the
processes by which such structures themselves arise from the local decisions of
individual agents. Our work extends this latter project, presenting a model for the
ways in which ‘communities’ within networks appear, evolve, and divide into new
sub-communities.
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1.1 Whatwe mean by “networks”

People form friendships and communities emerge…

Academic researchers work together and specialize into fields…

Autonomous systems form Internet relays and form a spider’s-web of Internet back-
bone…

Pages on the Web link to one another, some become popular, others languish, and an
entire industry arises to discover how they all relate to one another.

In the past fifty years, a convergence of scientific interest and engineering
developments has enabled computer scientists to study observational data regard-
ing the relationships among agents, systems, or texts in their own light. Interest in
the structure of networks—abstractions of agent relationships as graphs of vertices
connected by edges—dates at least as far back as Paul Milgram’s 1967 small-world
experiment, which found that, in 35 cases out of 160, a lettermailed to a randomres-
ident ofWichita, Kansas orOmaha, Nebraska could be forwarded through a chain
of personal acquaintances to a stockbroker in Sharon, Massachusetts [51, 64].

Today, the study of networks continues fast apace, with analytic tools signifi-
cantlymore sophisticated than postcards and the kindness of strangers. A nuanced
picture has emerged of features commonly observed in networks—as well as key
axes of variation—in an incredible array of contexts: data collected on hyperlink
networks in the World Wide Web [12, 37]; the spread and distribution of elec-
tronic files [23, 48] and email spam [18]; infrastructural networks for both electri-
cal power [8] and Internet [25, 50]; collaboration and citation in academia [8, 43],
the film industry [4, 8], and patent applications [43]; human interactions in online
social networks [7, 45, 71]; biology and neurology [5, 66]; and a wealth of other
environments [5, 55, 61].

Speaking broadly, we concern ourselves with networks that commonly ex-
hibit a few characteristic features:
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• Degree distribution. A few nodes (sometimes termed the core) are ‘popu-
lar’, having a largenumberofneighbors. Most, however, exist ona (relatively-
)sparse periphery [3, 8].

• Locality. Nodes generally are members of small, closely-knit communi-
ties [45, 66].

• Smallandshrinkingdiameters. Despite strong locality, randomly-selected
pairs of nodes are surprisingly close to each other, on average. As networks
grow in the number of nodes, the effective¹ diameter generally shrinks [17,
44].

• Robustness. Theabove three effects are robust to the removal of the nodes
that most contribute to them. This suggests that they are not the result of a
few outliers; rather, they are deeply embedded into the overall structure of
the graph [11, 13, 16].

While these properties are sometimes referred to as ‘graph laws’, it is impor-
tant to note that they are not so formal as that term suggests. Rather, the ways in
which networks may vary in their adherence to each ‘law’ are often enlightening:

• Granovetter’s 1973 “The Strength of Weak Ties” argued for the structural
importanceof single ‘long-distance’ links, in addition toneighborhood-based
locality structures, and the importance of accounting for them in accurately
modeling economic dynamics of networks [27, 28].

• Pennock, et al.’s 2002 “Winners Don’t Take All: Characterizing the Com-
petition for Links on the Web” challenged the understanding that the Web
graphwas dominated by its fat tail, suggesting that the global power-law dis-
tribution only arises as a mixture of lognormal distributions on indivdual
subnetworks [53, 60].

¹The diameter of a graph is themaximumdistance between a pair of nodes; the effective diameter
is a distance such that some majority of node-pairs are at most that distance apart.
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• Boldi, Rosa, and Vigna, in 2012, suggested that the structural robustness
of graphs varies significantly between two main types of graphs, indicating
a ‘web-like’ vs. ‘social-like’ dichotomy [7, 15]. Social-like graphs (such as
those observed in social, informational, and bibliographic networks), they
suggest, aredistinctlymore robust inmetrics like short-path-connectedness [11],
and tend to exhibit multiple, overlapping layers of structure [14].

As we explore the structure of networks, we must thus take care to retain
the proper perspective—informed by the general character of networks, yet aware
that our intuition and heuristics may often be mistaken in particular cases that are
more complicated than we first realize. Indeed, the twofold task—firstly, of for-
mally characterizing the heuristically-known and secondly, of intuitively under-
standing the empirically-observed—remains the essential challenge in the study
of networks.

1.2 Project overview

We take as the primary object of our study a bibliographic network that connects
authors if one has cited the other in an academic paper in theACMDigital Library.
After cleaning and pruning poorly-connected authors from our dataset, we are left
with 318,000 authors appearing in 293,000 publications published between 1951
and 2014, with 8,730,000 author-to-author links.

To decompose the latent structure of this network, we use the community-
attribute graph model (AGM), a powerful new network model presented by Yang
andLeskovec in 2014 [71], which labels nodeswithmembership in any number of
‘communities’, eachofwhich exhibits a higher-than-averagedensity of connections
between member nodes

The primary innovation of the AGM over other community-membership
networkmodels (discussed later in §2.3.1) is in conceptualizing communitymem-
berships as additive attributes, rather than in a normalized mixture, so that addi-
tional community memberships do not detract from existing affiliations. By con-
trast, models that assign nodes mixtures of communities force nodes with joint
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Figure 1.2.1: Figures from Yang and Leskovec [71]. Left: (a) a Facebook
user’s local friendship graph; (b) hand-labeled ground truth dividing it into
four overlapping communities; (c-e) results of applying common clustering
methods: (c) clique percolation (d) link clustering (e) mixed-memberhsip
stochastic block. Right: the same graph with an AGM algorithmically fit by
Yang and Leskovec’s method.

membership to split their connections among multiple communities, remaining
peripheral in each [70].

This innovationallows theAGMtobettermodelnetworkswheredenseover-
laps between networks are an important feature of the network structure. Con-
sider the comparison between an AGM and various community mixture models
on a graph taken from a Facebook user’s local friendship graph in Figure 1.2.1,
where only the AGMcorrectly interprets the dense core of the network as an over-
lap between multiple communities—sorting core nodes according to their signa-
tures of external connections to the periphery structure—rather than grouping
them into a dense super-community. We hypothesize, then, that the AGM will
also be useful to describe the structure of an academic citation network, where
we likewise wish to understand the fine structure of the network core in terms of
author’s affiliations with overlapping topic-based community clusters.

To develop a dynamic AGM, we take ‘snapshots’ of this network at regular
intervals—considering only papers published before a given date—and fit an as-
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signment of communities to each network with a statistical approach presented
by Yang and Leskovec [68, 69]. With a combination of established techniques in
evolutionary analysis [22] and techniques we develop specifically for analysis of
AGM communities, we compare the community structure at each snapshot with
the structure fit to the snapshots immediately before and after it, observing both
the changes within a single community and flow of members between communi-
ties.

1.3 Contributions

Wepresent the first techniques for fitting a dynamicAGMto a network evolving in
time and the first dynamic network model that is able to properly represent dense
overlaps between communities. Our techniques synthesize both methods for fit-
ting AGMs to static graphs, adapted methods from other evolutionary analysis
models, and specific innovations required by the community-attribute model.

Thus, we are able to present the first evolutionary analysis of intercommunity
structure in networks that properly models the core–periphery and community-
overlap structure observed in social and social-like networks. We present findings
regarding the dynamics of ‘inheritance’ of external intercommunity relationships
during events when one community splits into two or more over a series of snap-
shots.

Our work suggests a novel paradigm for generative graph models, namely,
treatingAGM-type communities themselves asnode-objects interacting in a grow-
ingmeta-network. Such a two-layermodel would provide the first truly generative
model for attribute-label graphs by simultaneously growing the network of com-
munities and continually populating it with new nodes and internal connections.
We conclude with a discussion of the obstacles remaining to the development of
such amodel and how theymight be surmounted by further inquiry using our an-
alytic techniques as well as others yet to be developed, building on our work.
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What is true of one apple may not be true of
another apple; thus more can be said about a
single apple than about all the apples in the
world.

Eliezer Yudkowsky

That’s all very well in practice, but how does it
work in theory?

aphorism, of disputed provenance

2
Motivation and Background

The work we present sits at the intersection of two long-established lines of
inquiry: What is the ‘right way’ to model network structure?, and How do networks
evolve over time? Though the twoquestions regard the sameobject of study, the first
is a descriptive exercise that aims to interpolate between observed facts, while the
latter is a predictive one, seeking to extrapolate network-structural ‘laws ofmotion’.

This chapter situates our work in the arc of each question and explains the
particular suitability of the attribute-label paradigm¹ for our purposes. In so doing,
we provide a limited technical survey of relevant models, briefly presenting their
relative strengths and weaknesses.

¹Recall that attributes (or labels) can be layered additively, whereas normalized mixtures force
nodes to trade off one affiliation for another.
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2.1 A history of networkmodels

Consider, as a source of intuition, the network connecting Harvard undergradu-
ates if they have exchanged email messages in the past year. While any one specific
graph might be able to provide information about a given population of students,
wemight instead seek to investigate the dynamics of email correspondence in gen-
eralby viewing the variationbetweennodes as the emergent result of somegeneral,
generative process.

To emphasize this distinction, we borrow terminology from the Stanford
NetworkAnalysis Project (SNAP) [42], distinguishing graphs—thedata of partic-
ular, fixed vertex-edge topologies—from networks, general models for connection
dynamics arising from the interactions of node-local properties.

We might expect, for example, gross structural phenomena observed in one
students’ email network to be largely similar in most related networks, e. g., other
years’ or schools’ students/emails networks, other samples of communication be-
tween college students, or even observations of more general communication pat-
terns among agents in other settings.

In the sections below, we will use this network to illustrate various historical
models proposed for modeling networks. In so doing, we hope to provide intu-
itive motivation for the model that we select for use later in this work. Analogous
examples include:

• Friendships registered on a social networking site.

• Cross-references in an online encyclopedia.

• Sets of products commonly purchased together through an online market-
place.

• Citations, collaborations, or other relatedness measures in document cor-
pora, such as patents, legal opinions, or academic publications.
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Remark 1. In some settings, this list might be extended to include networks of hy-
perlinks on the World-Wide Web, connections between Autonomous Systems in the
Internet, metabolic and protein-protein interactions, or ecological foodwebs. How-
ever, some authors have suggested that these networks are structurally distinct from
the foregoing,² differing in certain important structural properties [7, 11, 13]. We
defer the discussion of this distinction until §2.3.2 below.

The sections that follow provide a brief historical survey of methods for net-
work graph generation.³

Anextremely simplemodelof this email networkmight assume that students
send emails to randomrecipients at some constant rate. Thus, any given pair of stu-
dents will be connected with some probability p, independent of howmany other
connections each has, and how many connections they share.

2.1.1 Gilbert, Erdős, and Rényi

Historically speaking, randomgraphmodels date back to the uniformmodels pro-
posed by Gilbert [26], Erdős, and Rényi [24] for use in probabilistic proof meth-
ods. Probabilistic methods, broadly speaking, exploit statistical analysis of a dis-
tribution G̃ over a family of graphs G to demonstrate combinatorial facts:

• If the expected number of features b in a G̃-randomly-selected graph in G is
less than 1, then some graph in G has no bs:

E
(
b
(
G̃
))

< 1 =⇒ ∃G ∈ G : b
(
G
)
= 0. (2.1)

• If the G̃-probability that a graph in G has the property A is greater than 0,

³A version of this discussion previously appeared in our survey of graph-generation algo-
rithms [61].
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then some graph in G has the property A:

Pr
(
A
(
G̃
))

> 0 =⇒ ∃G ∈ G : A
(
G
)
. (2.2)

As statistical statements, these claims border on the tautological, but when
applied to simple, analytically tractable distributions, they provide a bridge from
statistical results to existential proofs. They are renderedmost useful by the simple
probability distributions to which they are usually applied:

• TheErdős–Rényi exact-edge-countmodel G̃n,N is equidistributedover all graphs
on n vertices with N edges.

• The Gilbert model G̃n,p has n vertices, each pair of which is connected by an
edge with independent probability p.

Remark 2. Statistically speaking, the two are quite similar—note that theGilbert
model is distributed as a mixture of Erdős–Rényi exact-edge-count models with the
edge-count distributed binomially as Bin

((n
2

)
, p
)
. Since the binomial approaches

zero relative deviation from itsmean in the n → ∞ limit, it is often useful to use the
Gilbert model as an approximation, even of graphs of known edge-count. (Among
its useful features is the fact that events involving disjoint regions of the graph are
independent, greatly facilitating statistical feature-counting.)

Indeed, since Erdős himself so often used the independent-edges formulation
of the Gilbert model, the Gilbert model is often called “the Erdős–Rényi model”, or
ER. In agreement with the literature, we adopt this terminology, and refer to “exact-
edge-count ER” explicitly when required.

The ER model, strictly speaking, is a model for graphs, though it is used
remarkably often as a single-parameter model for randomly-generated networks
when structural accuracy is not a significant desideratum. Again, it corresponds

10



to the case where connections between nodes are added independently and uni-
formly at random. Thus, the model has only two parameters: network size n and
global density p.

2.1.2 The Structure of Networks

However, our experience with both email and college students might lead us to
expect that our Harvard email network exhibit structural properties that this uni-
form model cannot represent well: interpersonal variation in email connected-
ness, densely-connected clusters of nodes, the existence of long-distance ‘bridges’
(either single nodes, or dense clusters) that prevent the diameter of the graph from
growing, even as the number of nodes increases, etc.

We can quantify these phenomena, and note that they are exponentially un-
likely even in ER models with a best-fit density p:

• Some nodes are much more popular than others. Node degrees in an
ERnetwork are distributed in aBinomial⁴ distribution, but communication
networks exhibit ‘fat-tailed’ behavior [3], in which highly-connected nodes
aremuchmore common than can be explained by a well-fit binomial distri-
bution. (For further discussion of node-degree distributions, see Appendix
B.)

• Connectednodes sharemanyneighbors. (1)Anynode’s neighborhood—
the set of nodes to which it is connected—has internal edge density signif-
icantly higher than p and (2) neighbor-pairs frequently exhibit strong ties,
sharing a fraction of neighbors significantly higher than p [66].

• Diameters are small, and shrink asnetworks grow. The graph diameter—
the largest distance between a connected pair of nodes—is smaller than the
O(log n)predicted forERgraphs, and in fact, often remains stable or shrinks
as graphs grow in the number of nodes [51].

To this set we often add a meta-property:

⁴A Binomial distribution, informally speaking, is a ‘discretized Normal’.
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• Theabove threeeffects are largely robust. Noneof these effects has a ‘sin-
gle point of failure’, either a single outlier node or a small anomalous group.
Even under the removal of the nodes thatmost contribute to node distribu-
tion, local-connectedness, or stable diameter, such phenomena tend to dis-
appear gradually, rather than suddenly. This suggests that they are deeply
embedded into the overall structure of the graph, rather than the result of a
few outliers [11, 13].

In our email analogy, robustness corresponds to believing that the structure
we quantify in the foregoingways generally reflects organic social dynamics
rather than top-down administrative design.

If we are to understand the growth and structure of networks, we must be
able to characterize, explain, and parametrize these phenomena (and their statisti-
cal subleties). It is this task that has given rise to the field of network structure theory
as a distinct field of inquiry within computer science.

Remark 3. Graph analysis often requires techniques distinct from ‘tabular’ data
analysis (the conventional treatment of ‘big data’ as tuples of properties with
static—if unknown—meanings). Traditional statistical methods for tabular data
are often unable to properly treat ‘rows’ as column labels too, in settings where
proper columnar attributes are of limited interest.

Instead, it is often necessary in graph analysis to treat the relationships be-
tween and among nodes as first-class objects—and since the space of possible ‘re-
lationships’ is combinatorial in nature, simplification and abstraction are of utmost
importance.

2.1.3 Structural Approaches

As thefirst (often informal) network-structural “laws”werediscovered, authors of-
ten sought to understand them through ad hoc models to simulate their structural

12



phenomena: Aiello, et al. modeled graphs with fat-tailed node degree distribu-
tions by considering an equidistribution over graphs with a suitable distribution
of node degrees, a la the Erdős–Rényi exact-edge-count model [3]. Watts and
Strogatz considered locality through a regular ring lattice—inwhich nodes in a cir-
cle are linked to their k nearest neighbors—augmented by uniformly-distributed
‘long-distance’ ER-like edges [66].

However, thesemodels are nomore plausible thanERas explanations ofwhy
large networks exhibit the structure that they do. (It is unlikely that variation in
email connectivity arises only from a distribution of social popularity coefficients,
or that it is dominated by the geographic layout of students.) For that task, we seek
generative models, which allow observed phenomena to emerge as a result of local
processes, rather than globally prescriptive structures.

Sequential-Attachment Models (1999-2005)

We might begin to enrich our email network with a notion of personal popularity.
(A natural one, in which both engineers and members of the student computing
society score quite highly.) Rather than passing judgment on students’ personal
qualities, however, we consider popularity as reflected in the network graph to deter-
mine a student’s likelihood of acquiring a new connection. For example, wemight
imagine that any student forming a new contact is more likely to link to a student
who has relatively many existing contacts, rather than one with relatively few.

Thuswe arrive at the classic generative graphmodel,BA, originally presented
by Barabási and Albert in 1999 as a technical implementation of the social maxim
“the rich get richer” [8]. It was the first of the family of sequential preferential attach-
ment models, wherein nodes are added iteratively to some small base graph, each
choosing some m nodes to connect to by considering their respective degrees (as
well as other considerations, potentially).

The original BA model uses strict linear preference—targets are chosen with
probabilities proportional to their current degree. This induces a power-law distri-
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bution:

p(density = d) ∝ dγ (2.3)

with exponent γ = 3 [8], which can be adjusted to any desired γ ∈ (2, 3) by
introducing random re-wiring and the addition of extra edges between existing
nodes⁵ [4]. (Related models for node degree distributions are discussed in Ap-
pendix B.)Other authors, attempting tomore closely fit empirical distributions of
edge sources and targets, proposed affine-linear preference functions—somewith
positive [60], and others with negative [35], offset.

Still others, attempting to extend the model to include locality structures,
proposed an alternative preference mechanism intended to induce community
structure and power-law popularity simultaneously: Students are more likely to
connect with the friends of their friends than with arbitrary strangers. In the fam-
ily of copying-based BA models, new nodes select a prototype, then prefer to make
connections to neighbors of their prototype, relative to other choices [37, 38].

Thismechanismnaturally induces a power law in node degree—since nodes
with high degree are more likely to end up in the neighborhood⁶ of a prototype—
but, more importantly, makes it more likely for two connected nodes to share
neighbors. More sophisticated copying-basedmodels instead occasionally add se-
lected nodes in the neighborhood of a prototype as prototypes themselves [44],
providing a generative process that quite plausibly reflects how we expect social,
bibliographic, and other informatic networks to grow.

Wemight even believe that thesemodels, in some sense, shed light onwhat’s
‘really happening’ in our email network at the level of node-local mechanics—we
can model the precise extent to which the targets of newly-added links are likely
to be nodes that are already well-connected, popular among the source node’s ex-
isting friends, etc.

However, the family of increasingly-complicated BA variants began to face a

⁵Re-wired edges retain one endpoint and have the other re-assigned preferentially; extra edges
have a uniformly-chosen source and a preferentially-chosen target.

⁶The neighborhood of a node is the set of nodes to which it is connected.
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troubling practical difficulty. While the sequential-attachment model tells a com-
pelling story about how global patterns emerge from local decisions, it is often
mathmatically infeasible tomarginalize the resulting distribution, to ask even sim-
ple questions such as “Well, what is the degree distribution, then?” While experi-
mental evidence could shed some light on the functional dependencies, the result-
ing state of affairs was considered troubling to many who had hoped that models
would give us tools amenable to mathematical—as well as empirical—analysis.
Instead, the field was dominated by a procession of ad hoc BA variants whose fun-
damental mathematical structures could only be understood by peering through
experimental keyholes.

Matrix Models (2004-2010)

In 2004, a research group from Carnegie Mellon proposed the Kronecker-product
model (KrΠ) fornetworkswhichpositeda fractal, nestedcommunity structure [19].
While it is often described as recursive in structure (indeed, the first versions were
called R-MAT, for RecursiveMATrix), this is merely an artifact of the adjacency-
matrix representation; the actual structure is more properly conceptualized as a
product of the initiator matrix in k independent indices.⁷

A generalized Kronecker-product (GKrΠ) model might describe a college
email network as follows:

• Each student has a ‘year’—students from the same year aremore likely than
average to be connected, and students within one year of each other slightly
less so. Freshman–senior connections are the rarest. An equal number of
students are in each year. (Years or year-pairs may have different densities,
and the densities between pairs of years need not depend on the inter-year
densities in any particular way.)

• Exactly 40%of students study ‘science’; exactly 60% study ‘humanities’; and
within each year, these ratios are exact as well. (The number of students

⁷For an exposition of the matrix interpretation as well, see the chapter “Kronecker Graphs” in
Jure Leskovec’s CMU PhD dissertation [40].
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in each year is, in fact, divisible by 5.) Each of science–science, science–
humanities, andhumanities–humanities has its owndensity of connections.
The proportions between them hold when considering any year alone, or
even any inter-year combination.

• Each student either lives on the ‘north side’ or the ‘south side’ of campus.
For every student living on the north side, there are three students living
on the south side in the same year and studying the same thing. North–
north connections are the densest, followed by south–south, and finally
by cross-campus connections—these densities, once again, remain propor-
tional among any intra-/inter-year (and/or intra-/inter-subject) subsample.

All effects on connection density apply multiplicatively, and so to determine
the connection probability between any pair of students, it suffices to know the
year, subject, and location of each; thenwe simply product the year–year, subject–
subject, and location–location interactions.

Furthermore, the independent andproportional distributionof types in each
index allows us to arrange the node-to-node connectivitymatrix (representing the
probability that any pair is connected) into sixteen blocks, all identical up to a
respective scalar factor, and each being further subdivided into twenty-five sub-
blocks, again identical up to scalar factors (which are chosen from the three sci-
ence/humanities density factors), and which can be further subdivided into six-
teen uniform sub-sub-blocks to represent the north/south structure.⁸

In actuality, Leskovec, et al.’s Kronecker models (KrΠ) use repeated appli-
cation of a single ‘initiatormatrix’, rather than separatematrices for years, subjects,
locations, etc. Formally:

⁸Since the effects of each feature are multiplicative and features have no particular order, we
could just as easily divide the matrix by subject first, then location, then year.
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• Let the initiator matrix A be some arbitrary n × n matrix:

A :=


a1,1 . . . a1,n
... . . . ...

an,1 . . . an,n

. (2.4)

Each index of the initiator represents a node ‘type’; each aα,β represents the
relative density⁹ of connections from type α to type β.¹⁰

• Label each of nk vertices with a unique k-vector of types in {1, . . . , n}.

• Connect node u⃗ = (ui)
k
i=1 to node v⃗ = (vi)

k
i=1 independently of any other

connections, with probability given by the inner product of their type-to-
type densities aui,vi :

Pr
(⃗
u⃗v ∈ E(k)

A

)
= min[1, ⟨⃗u, v⃗⟩A] = min

[
1,

k∏
i=1

aui,vi

]
. (2.5)

While the regularity of this type structure eases closed-form mathematical
analysis [30], even enabling efficientmethods for stochastically fitting the initiator
matrix to an empirically-observed network [41], the model proves overly restric-
tive in practice for describing many real networks, on a few counts [62]:

• Inter-type densities must be identical and independent.

• While typemembership ratios can be adjusted by includingmultiple equiv-
alent types [40], these ratiosmust be identical and independent across node
indices. Furthermore, the large n thus required to describe types that are
small relative to the population introduces further inefficiencies; see below.

⁹The original R-MAT model normalized the aα,β to sum to 1 and separately specified the total
number of edges; recent models proposed by Leskovec, et al. instead allow the aα,β to sum to an
arbitrary density parameter a, so that the graph densifies (a > 1) or sparsifies (a < 1) as it grows.

¹⁰In the undirected paradigm, the matrix will be symmetric, but we describe the general undi-
rected case here.
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• The population size is required to be exactly nk, where n is the number of
types and k is the number of independent node indices, with exactly one
node of each combination. Not only is this regularity statistically implau-
sible, it also severely limits both the number of indices and the ability to
express types that are small relative to the population size.

• Theproportional construction of the population alsomakes it impossible to
observe dynamics continuously, as single nodes are added; rather, dynamic
analysis [46] is limited to comparing graphs separated with sizes separated
by a minimum ratio of n.

These issues may explain why, in Leskovec’s original experiments in fitting Kro-
necker initiators [41], the fitted 2× 2 initiators generally factored as

A ≈

(
α
β

)(
α β

)
,

indicating that connection densities are modeled only by (normally-distributed)
node popularity parameter, without any locality structure.

Attribute-Label Models (2009-2014)

To address concerns that iterated initiators failed to fit the locality structure of
networks, a series of papers by Leskovec and various co-authors [36, 45, 49, 69]
explored weakening the regularity of KrΠ’s strict type-membership structure, ul-
timately yielding the community-attribute graph model (AGM) proposed by Yang
and Leskovec last year [71]. In an AGM network, nodes are labeled with the at-
tribute of membership (or non-membership) in each of k communities Hi. Nodes
may possess an arbitrary number of such membership attributes, and are consid-
ered to fully possess each (rather than resembling some fractional mixture). Each
community Hi has a coherence parameter hi, and for each community member-
ship that a pair of nodes share, they are linked with probability hi.¹¹ Communities

¹¹Probabilities compound independently, unlike Kronecker models, in which densities multi-
ply, so in fact it is mathematically simpler to compute the marginal probability of two nodes re-
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Figure 2.1.1: Figures from Yang and Leskovec [71]. Left: (a) a Facebook
user’s local friendship graph; (b) hand-labeled ground truth dividing it into
four overlapping communities; (c-e) results of applying common clustering
methods: (c) clique percolation (d) link clustering (e) mixed-memberhsip
stochastic block. Right: the same graph with an AGM algorithmically fit by
Yang and Leskovec’s method.

themselves, however, are allowed to interact freely, resulting in a variety of possible
intercommunity relationships beyond those possible in an (G)KrΠmodel:

• disjoint (as with types at the same level of a Kronecker model);

• overlapping with independent membership probabilities (as with types at
different levels of a Kronecker model);

• overlapping with (either positively or negatively) correlated membership
probabilities;

• concentric, i. e., H1 ⊂ H2.

maining unlinked as a product over the probabilities that they aren’t linked in any community they
share:

Pr(uv /∈ E) =
∏

i:(u,v∈Hi)

(1− hi) (2.6)
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To return once more to our email-network example, consider the ‘social cir-
cles’ that one student might simultaneously be a part of: the mathematics depart-
ment, the computer science department, the ballroom dance team, a particular
class year, a particular residential house…Each community will have have its own
average internal connection density, and though some may have membership dis-
tributions statistically independent from others (e. g., class year is independent of
house), others might not (e. g., themath department has a higher concentration of
ballroom dancers than average).

Furthermore, each of these communitiesmay have additional internal struc-
ture: the executive board of the ballroomdance team is a clique in the email graph,
the set of former teaching fellows in theCSdepartment ismore densely connected
than department as a whole, and so on. The relationships between communities
can be arbitrarily complex, allowing nested, overlapped, independent, or disjoint
structures of any size and—unlike in (G)KrΠ models—substructures present in
one region of the graph need not be present globally.

These possibilities, along with the freedom of scale allowed by dropping the
requirement that types have integer size ratios, allow for significant expressive free-
dom in describing community structure. In 2014, Yang and Leskovec also pre-
sented a technique for fitting AGM structure to a network by regularizedmachine
learning, with impressive results [71], particularly in decomposing the densely-
connected core of a social network into distinct combinations of overlapping affil-
iations with outside groups—see Figure 2.1.1.

2.2 Why attribute labels?

The history of network structure theory can largely be characterized by the mod-
els chosen to represent ‘the part of networks we care about’. As any number of
ill-fated models have shown us, choice of incorrect models impedes our ability to
accurately describe the structure of the networks under consideration, and worse,
complicates the task of generalizing our insights to new samples or settings.

Thus our choice of Yang and Leskovec’s community-attribute graph model
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data type models mechanics / connection probability
(none) ER uniform

node degree BA prefers higher-degree nodes
positional WS, CGA prefers closer nodes (resp. in grid/tree)
node[-set] Copy, Fire prefers neighbors of prototypes*
label-vector KrΠ, AGM inner product of type-to-type densities

Figure 2.2.1: Data & mechanics for the Erdős–Rényi (ER) [24], Barabási–
Albert (BA) [4, 8], Watts–Strogatz (WS) [66], community-guided attach-
ment (CGA) [44], prototype-copying (Copy) [37], forest-fire (Fire) [44],
Kronecker-product (KrΠ) [46], and community-attribute (AGM) [71] graph
models. (*The mechanics of the forest-fire model modify a node’s data in real
time, as well.)

(AGM) [71]merits serious consideration. In particular, wewish to confirm that it
is not only a good empirical fit to the data in practice, but that it is a good theoretical
fit, generally abstracting the ‘important parts’ of a network with a reasonable de-
gree of fidelity. It is only with this sort of theoretical validity that we will be able to
interpret the differences between model-fittings as being structurally meaningful.

The innovation of attribute labels presented by the AGM appears a plausi-
ble abstraction of network structure for this purpose, though the diversity of other
models that have been proposed indicates that it is not the only prima facie plausi-
ble candidate. Nevertheless, we argue, it is the most promising model for our data
and our specific interests.

2.2.1 Forms of node data

First, we draw a distinction between the data of a graph model from the model’s
mechanics—the former are the relevant features of a node that predict its connec-
tion patterns; the latter is a set of (in general probabilistic) algorithms that operate
on the data of the graph’s nodes to generate edges.

Themost common typesofdataused ingraphmodels are given inFigure2.2.1:
no data, node degree, positional information, node-sets, and type-vectors. They
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provide a way of categorizing graphmodels by their internal representation of het-
erogeneity between nodes and, correspondingly, the sort of structures they can or
cannot naturally induce. For example, ER models are a priori unable to produce
either fat-tailed degree distributions or locality structures, since nodes are labeled
with no information that would preferentially give rise to either.

Similarly, BAover-simplifies by considering only nodedegree, since it is then
unable to favor the production of locality structures. And while the node-sets of
theprototype-copying [37] and forest-fire [44]models havebeen shown to induce
community structure, they do it by imposing a recursive dependence on other
nodes (whose own community structure was dependent on other nodes…); in
practice, this iterative process proves difficult to marginalize¹² into useful conclu-
sions about nodes on a local scale.

Positional vs. label-vector

The two remaining types of node data are positional (i. e., encoding a location in a
grid, tree, or other structure) and label-vector (i. e., encoding one of several possi-
ble labels in each of multiple indices). Disregarding the outdated Watts–Strogatz
augmented lattice model [66], we consider the remaining three graph models:

• Community-guided attachment places nodes in a tree structure, then con-
nects them with probabilities based on their distance across the tree [44].
Nodes are placed into the tree in an entirely regular fasion.

• Kroneckermodels assign nodes a vector of labels representing types. Types
are arbitrary labels in {1, . . . , n}, where the inter-type effects are the same
for every vector index and combine multicatively across indices. Labels in
each index are assigned proportionally and independently.

• Community-attribute models assign nodes a vector of binary labels repre-
senting membership or nonmembership in a set of communities. Though

¹²Marginalization—of probabilities or other analytic measures—is the task of collapsing dis-
tributions over specific global outcomes into distributions over general categories and their local-
scale effects.

22



model assignment interactions effect interactions
CGA regular (tree-like) regular (tree distance)

KrΠ (intra-) semi-regular (disjoint; fixed ratios) arbitrary (set by initiator entries)
KrΠ (inter-) regular (independent proportions) regular (densities multiply)

AGM arbitrary (overlaps, concentricity) semi-regular (coherences compound)

Figure 2.2.2: Interactions between types in both the assignment and effect
of type data in the community-guided attachment (CGA) [44], Kronecker-
product (KrΠ) [46], and community-attribute (AGM) [71] graph models. For
KrΠ, we describe the relationships between (intra-) and across (inter-) indices.

the labels are binary, communities are heterogeneous in both size and co-
herence. The joint distributionofmemberships is not independent—mem-
bersof one communitymaybearbitrarilymoreor less likely than thegeneral
population to be members of another.

Of the three, CGA is by far the simplest in terms of the expressivity of its
community structure—nodes are identified with a single point in a hierarchical
tree of communities, and nodes are considered close to each other if they share a
common ancestor community with low height. Nodes are thus considered mem-
bers of exactly one tier-1 community, exactly one of its child tier-2 communities,
exactly one of its child tier-3 communities, etc. By contrast, label-vectors allow a
node to be labeled with multiple attributes that are not themselves located in an
explicit hierarchy.

While some authors have argued that some regions of theWorld-WideWeb
can be approximated in such a hierarchical framework [44], empirical work from
the Laboratory for Web Algorithmics (LAW) at the University of Milan indicates
that the structures of some graphs require a multi-axis characterization to capture
their locality structures properly [14, 65].

Later work from LAW suggested that a large category of networks, which
they call social-like¹³, are not only multi-axis in nature, but ‘robustly’ so [13], indi-

¹³The distinction between social-like and web-like structure is discussed later in this chapter, in
§2.3.2.
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Kronecker AGM
number of types n 2

type interpretation (arbitrary)
community

(non-)membership
relationship across indices independent arbitrary

population construction proportional probabilistic

Figure 2.2.3: Comparison of Kronecker vs.AGM type-vector data.

cating that a multi-axis representation is necessary for our purposes.

Kronecker types versus AGM memberships

Our analysis thus suggests that flat vectors of labels will be the most useful way
to express the features of nodes that affect connection structure in the social-like
networks we are interested in. This leaves us with two remaining questions: How
complex should the label system be? and How regular should the relationships be-
tween different labels be?

Considering the differences between Kronecker models and the AGM, we
see that we face a tradeoff between:

(KrΠ) freedom in type
structure within indices;
regularity across indices

(AGM) binary ‘type’ possibilities
within indices; arbitrary structure
across indices.

Note here that we are considering only the dependence of label assignment across
indices—in all cases, the mechanics across indices are simple multiplication/com-
pounding. However, we might also consider a label structure that is both simple
and regular, or one that has complex structure anddependence, and it is instructive
to ask why we don’t prefer either.

Complexity is a double-edged sword inmodeling—itmakes it easier to pro-
duce descriptive characterizations of empirically-observed structure, but more dif-
ficult to determine suitable parameter settings for generative uses. Nevertheless, if
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a certain form of complexity is actually present in our data, our models will need
some way of expressing it, but any free parameters introduced make the job of
modeling more difficult, since we then need to understand how they vary across
different networks.

Further consideration is thus required to determine the minimal set of free
parameters our model will need to accurately describe the networks in which we
are interested. Recall that fitted Kronecker initiators often fail to exhibit locality
structure [41] [§2.1.3], suggesting that some freedom of inter-index interaction
is required. Recent results suggest that models that include only a binary label in
each index (interpreted asmembership or nonmembership in a ‘community’) can
plausiblymodel community structure, when they allow for complex overlap struc-
tures [45, 68, 71]. Thus we believe that a model with simple intra-index structure
(membership/non-membership) but potentially very expressive inter-index rela-
tionships (dense overlap, disjointness, concentricity, etc.) can do a sufficient job
of characterizing structural complexity in the networks we consider.

2.3 Further considerations

2.3.1 ‘Additive’ / ‘transitive’ / ‘competitive’ community models

Besides the AGM, other modern models for mixed membership among densely-
connectedcommunities havebeenproposed, including cliquepercolation andvar-
ious stochastic block models. These two, in particular, are better-established and
more popular—and so deserve some discussion.

Clique percolation

Clique percolation is a combinatorial approach to community definition, which
defines a community as a k-clique¹⁴, plus any ‘adjacent’ k-cliques (two k-cliques
are adjacent if they share k − 1 nodes), plus any k-cliques adjacent to any of those

¹⁴A k-clique is a fully-connected subgraph of k nodes, i. e., one in which all pairs of nodes are
linked.
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cliques, etc. This definition allows a natural tuning parameter for the coarseness or
fineness of community detection and allows for both double andmultiple overlap
among communities without treating it as a special case. The structural simplicity
and lack of ambiguity in the definition of ‘community’ makes it easy¹⁵ to identify
community structures computationally.

However, the adjacent-k-cliques model of communities is significantly lim-
ited in its expressivity by the fact that it is very nearly transitive. An m-transitive
community model exhibits the property that, for any communities A,B,

|A ∩ B| ≥ m =⇒ A = B, (2.7)

i. e., any communities that share at least m members are the same community.
Thus, ‘1-transitive’models have completely disjoint communities and anym-trans-
itive model is limited to pairwise community overlaps of size strictly less than m.
More generally, for a subgraph H, an H-transitive community model exhibits the
property that, for any communities A,B,

H ⊆ (A ∩ B) =⇒ A = B, (2.8)

i. e., any communities whose overlap includes the subgraph H are the same com-
munity. Thus m-transitivity is equivalent to Im-transitivity, where Im is the inde-
pendent graph on m vertices.

The k-clique percolation community model is Kk-transitive, where Kk is the
clique on k vertices. Thus, nopair of distinct communities has an overlap including
a k-clique. This allows overlaps to be large, but in practice forces them to be rela-
tively sparse. In a network exhibiting a densely-connected central core structure,
as many social-like networks do [45], all but one community are severely limited
in their ability to include members from the core. Figure 2.1.1 gives an example
of a network with a dense core that cannot be shared between communities in

¹⁵all models dscussed in this section are NP-hard to resolve completely, but frequently much
more tractable to approximate in practice. Clique percolation is relatively unusual in that a simple,
efficient-in-practice, exact algorithm exists and is easily parallelizeable.
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the k-clique percolation model. By contrast, AGM communities, which are asso-
ciated with a probabilistic density property rather than combinatorial properties
over subgraphs, are less constrained in their freedom to allow dense overlaps.

Stochastic block models

A stochastic block model can be thought of as a simple generalized Kronecker
model, with a density matrix given by a uniform mixing (within communities)
and some arbitrary intercommunity factor per community pair. Typically, mem-
bership proportions are also allowed to vary freely. Stochastic block models are
therefore often used for networks where structure is dominated by variation in the
density of links between some set of discrete partitions (e. g., between pages pari-
tioned by website, or employees partitioned by firm).

However, discrete stochastic block models—wherein each node is a mem-
ber of exactly one community—are unable to model community overlaps natu-
rally, requiring the overlap itself to be defined as a separate block with high density
to each of its constitutents. In the case of multi-community overlaps, potentially
including very few members, the proliferation of additional communities postu-
lated becomes unwieldy.

Avariantof thediscrete stochastic blockmodel, themixed-membership stochas-
tic blockmodel, describes nodeswith amixture of fractional communitymember-
ships, with node-to-node connection likelihoods computed by product-sum over
all communities they share:

Pr(u → v) =
∑
Hi∋u

uHi · hi · vHi , (2.9)

where uHi is u’s degree of Hi-membership and hi is the coherence parameter of Hi.
However, theseoverlaps are sparser than single-membership regionsof a com-

munity, since nodes in an overlap split their connection potential among the com-
munities in which they take part (and nodes who share a joint membership are
less likely to be connected than if they had shared a sole membership in any sin-
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gle community instead.) For this reason, we say that mixed-membership models
have a competitive community structure, and have difficulty modeling dense core
structures. (Again, see Figure 2.1.1 for an example.)

By contrast, community memberships in an attribute-label model such as
AGM are additive, and the addition of a new membership serves only to increase
a node’s modeled connectivity with other members of the new group, rather than
in the decreasing modeled connectivity with its old communities.

An advantageous result of this mechanic is that, unlike in stochastic block
models, there is no need for a dedicated ‘core members’ group to account for the
increased density in a multiply-overlapping core that is adequately described by
the additive effects of the overlap. Thus, attribute-labelmodels aremore easily able
to represent fine semantic structure within the core, including unraveling compo-
nents of core nodes’ popularity into affiliations with nodes located on the periph-
ery. This capability is of significant interest for our task, allowing us to decompose
bibliographic networks by topic, even in their dense core.

2.3.2 ‘Social-like’ versus ‘web-like’ networks

The Laboratory forWeb Algorithmics (LAW, in Italian acronym) is a group in the
department of computer science at the University of Milan interested in the de-
velopment and analysis of algorithms andmethods for compressing and analyzing
network graphs [39].

Their contributions to the study of graph structure largely stem from their
focus on methods and technologies for compressing network graphs. Noting that
many network graph datasets ideal for study are too large to fit in even a large com-
puting system’s working memory (a situation that has not improved over time, as
graph sizes have easily kept pace with the scaling of computing hardware), they
tackled the problem of compressing graphs, to ease their computational study. Us-
ing efficient codes that exploit commonalities in network structure, they presented
a technique for compressing a large dataset drawn from theWorldWideWeb¹⁶ by

¹⁶The WebBase dataset they used [33] contains approximately 1.2 × 108 nodes and 1.0 × 109
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almost an order of magnitude [9, 10, 62].
However, the samecompression techniquesperformedcomparativelypoorly

on social networks (i. e., an academic co-citation network, theHollywood co-star-
ringnetwork, anda friendshipnetwork fromthe socialmedia siteLiveJournal) [13].
Later investigation into the reasons for this underperformance revealed significant
differences between the structure of such social networks.

Boldi andVigna found adistinctionbetweenweb-like graphs, whosenetwork
structure is generally sparse and dominated by a small fraction of ‘central’ nodes—
and social-like graphs, whose structure is generally dense and distributed [7]. For
example, they found that the effective diameter of the Facebook social network
increased by only 5% after removal of the most-central 30% of edges¹⁷ [16]. By
contrast, the same removal procedure left almost all pairs of a World Wide Web
graph disconnected.

Later work by LAW demonstrated a further consequence of this resilience
to disruption: the distribution of pairwise distances in social-like networks is far
more regular than that of pairwise distances in web-like networks, even among
networks with the same average diameter. To take Facebook as an example, a
randomly-selectedpair of users is separatedby 3.71 intervening friendsonaverage—
but 91% of all pairs are separated by four or fewer. A comparable web-like graph
might have ten times the variance in distances between pairs, with long distances
correspondingly far more common. Since the relative variance¹⁸ of pairwise dis-
tances (or the spid) is typically either well below or significantly greater than 1,
Boldi, Rosa, and Vigna have suggested that the spid distinguishes two distinct
classes of networks: the ‘social-like’ with spid ≪ 1 and ‘web-like’ with spid ≫
1 [15].

In thiswork,wefindourselvesprimarily concernedwith social-likenetworks,

edges [9].
¹⁷They explored various removal strategies, but the one uponwhich this result is basedwas to it-

eratively remove themost-connected nodes, alongwith all of their edges, until a given total fraction
of edges had been removed.

¹⁸The relative variance, or index of dispersion, of a nonnegative distribution is the ratio of its vari-
ance to its mean. “Spid” is acrnoymic to Shortest Path Index of Dispersion.
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with structure driven by the contributions of many nodes, rather than an influ-
ential few. Previous work has found citation and co-authorship networks to be
social-like [13], and we thus expect the structure of our networks to be driven by
the distributed behavior of many nodes. Therefore, we believe that a richer model
of node character (such as is provided by additive labels in an AGM) will be bet-
ter able to model the network’s structure, compared to a model better-suited to
centralized structure, such as KrΠ or mixed-membership stochastic block.

2.3.3 Free parameters and fitting

Having chosen the AGM as our model, we then face the question: How do we re-
solve the free parameters of intercommunity membership relationships?

Wecan fit them to an existing graph, as in theKronecker initiators fit byKro-
nFit [41] or the AGMs extracted by Yang and Leskovec’s machine-learning tech-
niques [71]. However, this reliance on fitting to determine ‘meta-structure’ in-
troduces limitations into the generative power of our model. Namely, it leaves us
unable to scale it past the point where the fittedmeta-structure can be expected to
retain roughly the same form.

As a concrete example, Yang andLeskovec’s fitted-AGMmethod canbe used
to produce an artificial Facebook-like network of a billion nodes by the procedure:

• Fit an AGM HFB to the billion-node Facebook graph, finding both popu-
lation proportions in communities (and their overlaps) and coherence pa-
rameters.

• Use the HFB population proportions to randomly generate a billion nodes
labeled with community memberships.

• Randomly assign linksbetween thenodeswithweights determinedby com-
munity memberships.

However, if we attempt to produce a Facebook-like network of five billion users by
simply over-populating it in the second step, then the community structure will
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remain the same in shape, with every community and multi-community overlap
simply five times larger.

This is not, in general, realistic—while some sorts of communities in social
networks scale roughly with global population, others do not, remaining stable in
size [45]. Furthermore, there is evidence that many networks densify and decrease
in diameter [7, 15, 45], rather than growing apart as an overpopulatedHFB would.
And finally, even if we only care about producing artificial networks of∼1 billion
nodes, we still might wish to explore the space of possible community structures
that might have emerged, rather than merely considering possible populations of
individuals within a single fixed structure.

Instead, we seek a generative model for the community-structure layer it-
self. Such a two-tiered model would allow us to provide a model not just for re-
configurations of a particular structural pattern, but a general distribution over the
possible patterns that might emerge. However, there is one additional perspective
we wish to consider: that of the evolution of the network structure through time.

2.4 Networks over time

Priorwork regardingnetworks evolvingover timehas fallen into twodistinctmodes
of analysis: Aggarwal and Subbian name them maintenance methods and analyti-
cal evolution analysis in their 2014 survey of the literature in evolutionary network
analysis [1]. To quote from the same survey:

• Maintenance Methods: In these cases, it is desirable to main-
tain the results of the data mining process continuously over
time. For example, the results of a classification and cluster-
ing method will evolve as the structure of the graph changes
over time. Therefore, the results of the methods will become
stale over time, and the goal is to maintain the freshness of the
end results. Correspondingly, it is desirable to provide meth-
ods that canmaintain these results continuously and incremen-
tally over time.
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• Analytical Evolution Analysis: In these cases, it is desirable to di-
rectly quantify and understand the changes that have occurred
in the underlying network. Themain point to remember is that
such models are focused on modeling the change, rather than
correcting or adjusting for the staleness in the results of data
mining algorithms on networks. Direct evolution analysis is
closely related to the problem of outlier detection in temporal
networksbecause temporal outliers areoftendefinedas (abrupt)
change points. [1]

Authorsproposing ‘maintenancemethods’ havepresentedevolutionary vari-
ants of conventional approaches for statistical [20] and spectral clustering [21],
and stochastic-block decompositions [47]; techniques involving ‘forgetting’ pa-
rameters adapted for networks with bursty evolution [57, 67]; and methods de-
signed specifically for heterogeneous, evolving networks [31]. In every case, how-
ever, their goal has been tominimize and regularize the change in network structure
between successive timesteps, so as to assign the most stable labeling possible to
nodes in a graph.

However, we wish instead to explore precisely how community structure
evolves over time, and so align ourselves with the project of ‘evolution analysis’
instead. This project draws inspiration from the literature of generative network
models previously discussed [3, 4, 24, 37, 38, 44, 46], to understand general node-
level evolutionmechanics and how they induce structural phenomena on a global
scale [44]. However, to draw any meaningful conclusions from observed changes
in model parameters, it is necessary to select a structural model with easily-int-
erpretable parameters. For example, Hopcroft, et al. analyzed a citation network
in a hierarchical clustering model, with the hope that branches of the hierarchy
would correspond to academic subjects [34], with significant structural changes
reflecting the emergence or consolidation of research areas in academic science.
Aggarwal and Yu would later expand this work with an analysis of the expansion
and contraction of communities between emergence and disappearance events as
well [2].
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Unfortunately, hierarchical models are known to be a bad fit for social-like
networks [13, 14], and further work such as Palla, et al.’s experiments with clique
percolation [58] has sought to usemodels ever better-suited to describing the net-
works under consideration. It is in this tradition that we use the community-at-
tribute graphmodel—which is known to be superior [71] to hierarchical models,
stochastic-block models, and clique percolation in modeling communities with
dense overlap—to examine the evolution of communities, rather than hierarchies,
blocks, or cliques.

Nevertheless, wedraw fromconceptual advances inbothmaintenancemeth-
ods and evolution analysis to inspire both themethodology we use to identify and
quantify community continuity between timeslices [29] and the technical vocab-
ulary we use to describe forms of continuity and discontinuity [22]. The ‘snapshot
method’—comparing structural models fitted to rasterizations of the graph at dis-
crete times—is one such established method [1].
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When we try to pick out anything by itself,
we find it hitched to everything else in the
Universe.

John Muir

3
Data andMethods

Thefundamentalchallenge ingraphanalysis is to render combinatorially-
complex data regarding graph structure into concise, comprehensible forms. To
analyze the evolution of community structure among authors in a bibliographic
network, for example, we reduce a corpus of papers to a sequence of graph snap-
shots in time (e. g., of author citations up to given dates), reduce each graph to a fit-
tedAGM, identify continuities and discontinuities ‘in essence’ along the sequence
of AGMs, and finally abstract the complex, interwoven histories of communities
interacting over time into a simple set of structural-dynamic patterns.

In so doing, we discard much information by necessity and ignore a great
deal of nuance. This chapter outlines our methodology and catalogues the infor-
mation retained or synthesized in each step of the process.
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3.1 The Computer Science citation graph

3.1.1 The ACM dataset

Ourdataset is a subset of theAssociation forComputingMachinery (ACM)’sDig-
ital Library database made available for academic research purposes, which we re-
fer to hereafter as “the ACM dataset”. (We thank the ACM for making the dataset
available.) It encompasses 9,519 journal periodicals and 6,421 conference pro-
ceedings, a total of 337,004 published titles over a timespan of almost 63 years
(1951-2014). Papers are associated with a total of 755,016 unique author IDs,
though unfortunately this list includesmany duplicated entries.¹ Conservative de-
synonymization heuristics reduce the table of authors to 550,079 author IDs. We
use this set of merged authors—augmented by a few by-hand corrections in small
experiments—rather than a more aggressively auto-corrected one, to avoid intro-
ducing spurious structure that would appear in later analysis.

After also recursively eliminating trees of authors with only one citation-
made or cited-by record, we are left with 318,546 authors and 293,051 total pa-
pers. Considering citations and cited-by relationships together yields a total of
8,730,127 author-to-author relationships across the entire time-interval, an aver-
age of 54.8 per author. Authors appear in the dataset for an average of 12.8 years
each (since they are first listed as an author on a paper), and thus add an average
of 4.2 relationships per year. Note, however, that the subsamples that we chose for
analysis involve much larger and faster-growing ego networks.²

¹In one example, author S. Kominers appears with seven different author IDs associated with
the name “Scott|Duke|Kominers”, two with the name “Scott|D.|Kominers”, and one each with
“Scott||Duke Kominers” and “Scott Duke||Kominers”.

²An ego network is a subset of a graph produced by restricting to vertices in the neighborhood
of a given vertex v (and the edges between them), excluding v itself. In Appendix A, we discuss the
features that make ego networks an attractive unit for subsampling graphical data.
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3.2 Fitting an AGMto a static graph

Recall that an attribute-label graph model (AGM) represents network structure
with a set of communities, each of which has a membership set of nodes and a
coherence parameter hi, potentially unique per-community. The probability that
two nodes are connected increases the more communities they share, with each
contributing community contributing a probability approximately equal to its co-
herence, up to a point of diminishing returns.

So, to fit an AGM to a given graph, we seek a configuration of the model
parameters—membership sets {Hi}k

i and coherence parameters {hi}k
i —with re-

spect to which the (log-)likelihood of the data is maximized:

argmax
{H⃗s=(Hi,hi)}k

i

log L(Hs) =

(∑
uv∈E

log Pr
H⃗s
(uv ∈ E)

)
+

(∑
uv/∈E

log Pr
H⃗s
(uv /∈ E)

)

=

∑
uv∈E

log

1−
∏

i:(u,v∈Hi)

(1− hi)

+

 ∑
uv/∈E

i:(u,v∈Hi)

log(1− hi)


(3.1)

To extract a fittedAGMfroma graph, it is thus necessary to simultaneously fit both
the membership sets and the coherence parameters. Additionally, if the desired
number of communities is not known a priori, then an additional fitting proce-
dure is needed to adjust the number of communities, under some regularization
constraints.

We use Yang and Leskovec’s AGMFit software, in the SNAP library [42],
which uses the Metropolis-Hastings algorithm [56] to perform stochastic gradi-
ent descent over the space of possible community assignments [68]. At each stage,
nodes are permitted to leave a single community, join a single community, or si-
multaneously leave one community and join one other; the best choice from a
randomly-generated sample is applied, and the process repeats. Community co-
herence parameters are updated by EM alternating-stage optimization, and the
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number of communities itself is fit by periodically removing communities from an
initially-large candidate set when they fail to contribute significantly to the l1-regu-
larized log-likelihood [70]. The AGMFit algorithm terminates heuristically, typ-
ically running in time quadratic in the number of nodes in a network [68]³.

Further details about the parameters we used are enclosed in Appendix A,
and we evaluate the results of AGMFit on our data in the next chapter.

3.3 Mapping community continuities over time

As detected communities have no natural ordering or identification apart from
their membership sets and coherence parameters, we post-processed the detected
communities to identify continuity relationships between successive snapshots
(i. e., correspondence between a community detected at time t a largely similar
community detected at time t + 1, differing only by a small fraction of members
who joined or left in the interval between). To accomplish this task, we consid-
ered communities at time t which had relatively large overlap with corresponding
communities at time t + 1.

However, the size of overlap between two communities A,B can be viewed
from two perspectives: its size relative to A, and its size relative to B. While the
ratios are equal in the case that A and B are the same size, the influence of A on B
will be different from the influence of B on A if the two communities differ in size.
Formally:

⟨A⟩B :=
|A ∩ B|
|A|

⟨B⟩A :=
|A ∩ B|
|B|

(3.2)

|A| > |B| =⇒ ⟨A⟩B < ⟨B⟩A (3.3)

where ⟨A⟩B denotes the influence ofB onA and ⟨B⟩A denotes the influence ofA on

³This result was generally reflected in our experience runningAGMFitonour samples, though
we do not present quantitative data on the matter here.
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B. When A and B are communities from different points in time, we refer instead
to the fraction of nodes in the predecessor At which remain in the successor At+1

(the ‘influence of the predecessor on the successor’) as the survival ratio ⟨At⟩At+1

and the fraction of nodes in the successor which came from the predecessor (the
‘influence of the successor on the predecessor’) as the inheritance ratio ⟨At+1⟩At

,
where, again, the survival ratio will be greater (resp. less) than the inheritance ra-
tio if the community size grew (resp. shrank) over the intervening interval. If we
require instead a symmetrized statistic, we may also consider the geometric mean
of the two, the (symmetric) agreement ratio:

⟨At|At+1⟩ :=
|At ∩ At+1|√
|At| · |At+1|

(3.4)

Figure 3.3.1 gives an example of how influence, survival, and inheritance ra-
tios can vary between differently-sized communities in practice.

3.4 Characterizing intercommunity relationships

Asymmetric influence ratios are also useful to quantify many other types of inter-
community relationships, beyond those of a community to past or future versions
of itself:

• the relationship between two distinct communities within the same time-
slice

• the makeup of the population of a newly-emerged community, in terms of
its inheritance from other extant communities

• the dynamics of events where one community ‘splits’ into two ormore new
communities.

Any of these tasks can be conceptualized in terms of an influence matrix,
closely related to a covariance matrix in statistics. Given a vector (Ai)i of commu-
nities (either from the same year, or from different years), each entry Mi,j of the
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Figure 3.3.1: Left: Detail of a single community in M. Seltzer’s 1998 ego
network. Striped colors indicate joint membership in other communities not
fully shown. Links are not shown. Right: The same detail in the next year,
after the green community has split into two—brown and purple—with new
additions circled in black.

When green split, purple inherited almost exclusively from former-green,
whereas brown adopted the same absolute number of former green mem-
bers, plus a number of new members. Thus, green has survival ratios of about
⟨G⟩B ≈ ⟨G⟩P ≈ 70% with respect to both purple and brown, but purple has
a ⟨P⟩G = 94% inheritance ratio, whereas brown has a lower ⟨B⟩G = 77%.
Similarly, the agreement ratios of purple and brown with respect to green are
⟨G|P⟩ = 81% and ⟨G|P⟩ = 74%, respectively. Note that the inheritance ra-
tios are larger than the respective survival ratios because purple and brown are
both smaller than green.
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⟨A⟩B B 1998 1999
A B Y G B Y G R

1998 B — 0.45 0.23 1.00 0.47 0.20 0.07
Y 0.44 — 0.20 0.46 0.90 0.17 0.17
G 0.21 0.19 — 0.24 0.19 0.71 0.69

1999 B 0.98 0.46 0.24 — 0.49 0.22 0.10
Y 0.47 0.93 0.20 0.50 — 0.20 0.15
G 0.21 0.18 0.77 0.23 0.21 — 0.44
R 0.10 0.23 0.94 0.13 0.19 0.55 —

Figure 3.4.1: 1998/1999 influence matrix between three communities in 1998
and four communities in 1999 in M. Seltzer’s ego network. The upper-left and
lower-right quadrants are within-year influence matrices; the upper-right and
lower-left hold ⟨At⟩Bt+1

(survival) and ⟨At+1⟩Bt
(inheritance) matrices, respec-

tively. Values greater than 0.3 have been highlighted, and values greater than
0.5 bolded, for emphasis.

matrix holds ⟨Ai⟩Aj
, the influence of Aj on Ai. An example is given in Figure 3.4.1,

produced from the graphs visualized in Figure 3.4.2

3.4.1 The structural character of community continuity

Examination of 1639 instances of potential community continuity across 196 dis-
tinct snapshot-pairs collected fromAGMfittings of twelve different ego networks⁴
indicated that 69%of potential continuity instances exhibited survival ratios above

⁴Here, we examined the ego networks of Thomas Anderson, Brian Bershad, Gregory Ganger,
Garth Gibson, Robert Harper, Scott Kominers, Butler Lampson, Michael Mitzenmacher, Michael
Rabin, Mendel Rosenblum, Margo Seltzer, and Yaron Singer—an arbitrarily-chosen group of rel-
atively prolific and well-connected authors in a variety of fields. On average, per snapshot, their
respective ego networks had 362 authors, 8.3 communities, and 579 total memberships among
345 authors with at least one membership. An average of 127 authors per snapshot were members
of more than one community, with an average of 2.85 memberships each. The largest community
in each snapshot had 85 members on average, encompassing 23% of the population; the second,
78 members and 22%.
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Figure 3.4.2: M. Seltzer’s 1998 (left) and 1999 (right) ego networks, col-
ored with community assignments produced by AGMFit. Striped colors indi-
cate joint membership in two or more communities; new nodes are circled in
black.

Note, as in the prior detail of this event [Fig. 3.3.1], that the 1998 green com-
munity splits into two ‘sibling’ communities in 1999, one (green; purple in
previous figure) exhibiting significant external influence, and the other (red;
brown in previous figure) overlapping very little with any communities besides
its sibling.
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0.8 to their closest possible successor. In 99.5% of such cases, the latter commu-
nity (in the succeeding snapshot) inherited more from the former community (in
the preceding snapshot) than it did from any other potential predecessor. We call
such a case a perfect match.

In the other 0.5% of cases, two communities in the succeeding snapshot each
inherited more from the predecessor community than from any other potential
predecessor. (We call such a case a dual match.) Given that our networks are
growing in both nodes and communities, it is inevitable that such dual matches
will exist—indeed, since we will later be interested in studying them in their own
right, we wish to fix a few simple criteria that will allow us to distinguish ‘good’
perfect matches from ‘good’ dual matches algorithmically.

While itwouldbepossible for us to simply accept all perfectmatches as valid,
it is not clear that doing sowill yielddesired results. For example, there exist degen-
erate examples of ‘perfect’ matches where nevertheless the best-matched succes-
sor and second-best-matched successor both exhibit a survival ratio above 0.5—
and more generally, in the presence of large overlaps between communities, the
discontinuous condition of ‘highest inheritance ratio’ can be susceptible to noise.
Thus, we prefer to treat ‘perfect matches’ as noisy training data to which we wish
to fit a model.

However, the choice of what model to fit is not an obvious one. Without a
generative model for community structure—as such a model is, after all, our orig-
inal desideratum—we wish to use as simple a model as possible for this filter, to
avoid propagating biases into our later analysis.

With knowledge of the factors we expected to be useful, we chose an ex-
tremely simple two-factor classification model:

accept
[
At → A(1)

t+1

]
iff:
(
At = [At+1]

(1)
t

)
and (3.5)((

⟨At⟩[A](1)t+1
> c
)
or
(
⟨At⟩[A](2)t+1

< c′
))

,

where [A](k)t+1 is the community in snapshot t + 1 to which At has its kth-highest
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TP FP FP∼ Recall Precision Precision∼

0.95 325 1 4 29.3% 99.7% 68.3%
0.9 516 3 7 46.5% 99.4% 77.4%
0.85 640 7 25 57.7% 98.9% 80.9%
0.8 740 25 51 66.7% 96.7% 83.1%
0.75 848 51 82 76.4% 94.3% 84.9%
0.7 928 82 118 83.6% 91.9% 86.0%
0.65 1007 118 139 90.7% 89.5% 87.0%

Figure 3.4.3: Precision and recall scores for various cutoff levels for ⟨survival
ratio to best-matched successor⟩. We considered both false positives above
the cutoff itself (FP) and ‘close calls’ (FP∼) within a safety margin of 0.05
points of misclassification. Ultimately, a cutoff of 0.75 was chosen manually
for use, as a tradeoff between recall and precision.

survival ratio, and ⟨At⟩Bt+1
represents the survival ratio from At to Bt+1. That is, to

match At with its best-matched successor, we require that the successor name At

as the predecessor it inherits themost from, and that either (1) the survival ratio is
better than the cutoff c, or (2) no other option does better than the no-alternative
threshold c′.

For our thresholds, we chose c = 0.85 and c′ = 0.5 manually, after in-
spection of the recall and precision scores⁵ they produced. (See Figures 3.4.3 and
3.4.4.) In the following chapter, we will investigate how communities in our net-
work meet this continuity criterion over multiple snapshots, and the evolution
they undergo as they do.

3.4.2 The joint character of sibling-pair inheritance

Having identified community continuities, we turn next to community discontin-
uities. We consider any event that (1) fails to satisfy the continuity criterion, and
(2) where multiple communities each inherit most from a single predecessor as

⁵Recall is the fraction of the desired cases a classification successfully accepts; precision is the
fractionof accepts that are correct. The trivially acceptingmodel has perfect recall but unacceptably
low precision; a model which accepts a single sample with high certainty may have near-perfect
precision but low recall.
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TP FP FP∼ Recall Precision Precision∼

0 848 51 51 76.4% 94.3% 94.3%
0.3 859 51 51 77.4% 94.4% 94.4%
0.35 869 51 51 78.3% 94.5% 94.5%
0.4 904 51 54 81.4% 94.7% 94.4%
0.45 952 54 58 85.8% 94.6% 94.3%
0.5 1009 58 88 90.9% 94.6% 92.0%
0.55 1054 88 117 95.0% 92.3% 90.0%
0.6 1078 114 136 97.1% 90.4% 88.8%
0.65 1107 136 150 99.7% 89.1% 88.1%

Figure 3.4.4: Precision and recall scores for various ‘no-alternative thresh-
olds’, which pass cases failed by the above test when ⟨survival ratio to second-
best-matched successor⟩ is below the no-alternative level. We considered both
false positives below the threshold itself (FP) and ‘close calls’ (FP∼) within
a safety margin of 0.05 points of misclassification. Ultimately, a cutoff of 0.5
was chosen manually for use, as a tradeoff between recall and precision.

a splitting event, taking any predecessor–successor relationship with a survival ra-
tio above 0.5 as a parent–child relationship. (The relationship between children is,
naturally, siblings.)

Having thus identified community-splitting events on a structural basis, we
can now examine the structural character of ‘new’ communities at the time that
they are first identified by AGMFit (either as de novo arrivals, or as children in
a splitting event). In neither case do we expect this ‘appearance’ to correspond
to a discrete event in the bibliographic universe; rather, it occurs at the point in
time thatmodeling the structure becomes ‘worth it’ with respect to our regulariza-
tion heuristics. Thus, we consider ‘new’ communities as generally representative
of nascent proto-communities in general, even before the point at which they are
observable algorithmically.

We are particularly interested in the relationships between newly-emerging
communities, their closest ‘siblings’, and the other communities with which they
respectively overlap. In Figure 3.3.1, for example, we observe one community in
1998 ‘splitting’ into two communities in 1999. (Since neither has a survival ratio
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above 0.75, our criterion does not consider either to be the continuation of the
parent—rather, we treat both as simultaneous new appearances.)

Both exhibit relatively high survival ratios with respect to their parent, but
one(red) inherits almost exclusively fromtheparent itself, whereas theother (green)
both inherits the bulk of the parent’s external influence and acquires significant
additional influence from previously-unaffiliated nodes. Furthermore, we see that
their intersection, considered alone, inherits a disproportionate amount of the par-
ent’s external influence.

We might ask, then, how common these patterns are; more generally, we
might ask how the communities resulting from a split differ from each other and
from theirmutual intersection—in termsof the external structure they inherit—in
a ‘typical’ splitting event.
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I am a part of all that I have met.

Alfred Tennyson

4
Experimental Results

For ease of reference, plotted figures are collected in §4.5, at the endof this chapter.

4.1 Preliminaries

As discussed in the previous chapter [§3.4.1], we apply a simple criterion on the
survival and inheritance ratios between communities todistinguish continuity and
splitting events from non-events, as well as from each other. From our 1639 in-
stances of potential community continuity discussed previously [§3.4.1], we find
146qualify asbinary splitting events (i. e., splitting eventswhichproduce exactly two
child communities), out of a total of 336 total potential splits. Figure 4.5.1 shows
that these events take place in snapshots of a wide range of sizes—from snapshots
of fewer than a hundred nodes total, to snapshots including communities of a few
hundred nodes. Similarly, the snapshots from which we draw samples include be-
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Term Subset Size (% / Parent)
Parent A 100%

Child/Sibling B ; C 30%
Intersect B ∩ C 33%

Wing (B ∩ ¬C) ∩ A ; (C ∩ ¬B) ∩ A 31%
Extension (B ∩ ¬C) ∩ ¬A ; (C ∩ ¬B) ∩ ¬A 28%

Figure 4.2.1: Terminology for segments of a sibling pair. The final column
provides rough average sizes; see Figure 4.5.3 for a more complete table.

tween 3 and 21 communities, so the effects we observe are not particular to any
given network size.

Across the range of network sizes, the number of communities fit grows ap-
proximately in proportion to the number of authors in the network. (See Figure
4.5.1.) This is not a particularly profound observation about network structure
per se, since the absolute number of communities is controled by AGMFit’s regu-
larization heuristics, but it is useful to remember as we consider samples across a
range of sizes.

4.2 Anatomy of a sibling pair

Each binary splitting event involves a single parent community and two child/sib-
ling communities. For the purposes of structural anaysis, we consider the siblings’
intersection and their disjoint differences as distinct subsets. Furthermore, for
each of the disjoint differences, we make a distinction between the portion inher-
ited from the parent (the ‘wing’) and the portion which was adopted from else-
where (the ‘extension’), including new nodes, previously unaffiliated nodes, and
nodes from other communities added to the child. These segments each exhibit
distinct character in terms of their respective relations to other communities, as
we see below.

These segments generally assume roughly similar proportions across a range
of sizes spanning most of an order of magnitude. Figure 4.5.3 indicates that the
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Intersect Lg. Wing Sm. Wing Not Inherited Lg. Extension Sm. Extension
parent’s μ 33.6% 38.2% 23.9% 4.3% 36.6% 20.2%
nodes σ2 8.7% 6.7% 6.8% 4.9% 15.7% 13.7%
parent’s μ 53.0% 22.5% 18.2% 6.3% 27.9% 19.1%
CRC σ2 13% 20.7% 16.7% 33.7% 12.2% 10.3%

Figure 4.2.2: Fraction of the parent’s nodes and CRC inherited or adopted
by each segment among the samples studied. All fractions are with respect
to the parent community; the first four columns are inherited from the par-
ent, but the last two are adopted from external sources. ‘Lg.’ ‘Sm.’ denote
statistics of the larger (resp. smaller) of the two wings or extensions in each
sample.

relative sizes of the head and each wing and intersection are almost nearly linear in
the size of the overall union and correspondingly, that the fractionof the union that
each segment represents is roughly invariant over community size. This invariance
suggests that wemay plausibly compare the structural dynamics of large and small
splitting communities in the same terms, as they represent the same general sort
of event. We will revisit this hypothesis throughout our analysis.

Figure 4.2.2 reports the average size of each segment observed in our sam-
ples; note that the five segments are roughly of equal size. As with the number of
communities by author count, this fact is not itself particularly enlightening, as it is
largely an artifact of the parameters we use to regularize number of communities,
but it too will be useful to keep in mind throughout our analysis of the structural
character of each segment.

The community relation count (CRC) also presented there is the number of
memberships a node or set of nodes has with communities besides either of the
siblings. Thus a node in the intersect, but with no external memberships, would
have a CRC of 0, whereas a node in one of the wings with two other memberships
would have aCRCof 2. The total CRC is intended here as ametric for the amount
of total external influence exerted by (and on) a particular region of the split.¹

¹In a more sophisticated treatment, we might use a proper structural measure to quantify the
importance of particular nodes. However, here CRC serves as a simple linear approximation, in
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4.3 (The lack of) ‘inter-sibling rivalry’

In §3.4.2, we asked about the relationship between siblings, particularly with re-
spect to the degree to which their inheritance patterns were correlated or anticor-
related. In theparticular, weobserved an instancewhere one siblingboth inherited
and adopted significant external influence, whereas the other remained almost en-
tirely limited to its parent’s former membership, with relatively few overlaps with
other communities besides those mediated by its more-‘social’ sibling.

This pattern, however, is not well-supported in the data on sibling-pairs—
we observe no such modality on the distribution of ‘sociality’ across our sample
of binary sibling pairs. Consider Figure 4.5.4, which indicates that bimodality is
not generally supported in the data. While this result may appear surprising, it
serves to highlight that the term splitting events is something of a misnomer—in
actuality, we are observing nascent community structure being brought to light,
not an significant shift in the global community structure.

4.4 Per-segment inheritance dynamics

We consider, then, what the emergence of nascent structure can tell us: the de-
gree to which each of the segments is generally connected to external communi-
ties before and after the split. Figure 4.5.5 reports the fraction of the parent’smem-
bers with external relations which is inherited by each segment, respectively. In all
cases, observe the roughly linear relation on a linear-logarithmic scale, suggesting
a power-law distribution, as is present in general throughout the network. Note
also that:

• Considering only counterparts to whom the parent was weakly connected,
the intersect is approximately three times more likely than any other sin-
gle segment to inherit the parent’s high-CRC members. In total, it inherits
about 60%of thehigh-CRCmembers in this group, andeachextension adds
an additional 20% to the 20% that its wing inherits.

the absence of a model-driven approach.
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• However, among communities to whom the parent was strongly connected,
the intersect is overwhelmingly more likely to inherit high-CRC members.
In the sampleobserved, the intersectwas approximately 50 timesmore likely
to inherit a member from the parent with a CRC of 4 to strongly-related
communities.

Ultimately, the wings end up with only slightly fewer high-CRC members
than the intersect, as one might expect for two randomly-selected communities
with comparable overlap size [Figure 4.5.7]. However, the vast majority of the
new high-CRC members in the wings or extensions (i. e., outside of the intersect)
are from new counterparts, to whom the parent community was not previously
connected.

4.5 Figures

Figure 4.5.1: Samples by number of authors and number of communities
fitted.
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Figure 4.5.2: Number of authors vs. number of communities fit

Figure 4.5.3: Total size of a splitting community vs. the proportions of the
intersection (‘head’), the inherited disjoint components (‘wings’), and the
adopted disjoint components (the ‘extensions’). The fraction of the union
that each segment makes up is roughly independent of union size; the trends
are flat with p = 0.007, 1.4× 10−5, 0.02, respectively.)
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Figure 4.5.4: Top: Siblings’ respective total sizes (excluding the intersect).
Bottom left: Siblings’ respective wing sizes. Bottom right: Siblings’ respec-
tive extension sizes. Note in all cases that distributions are unimodal, indicat-
ing that the extreme difference of character observed in §3.4.2 is atypical.
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Figure 4.5.5: Among the 71 splitting events with > 125 final members, pro-
portion of externally-connected members inherited by the extensions, wings,
and intersect, respectively. The horizontal axis limits consideration to nodes
with a given community relation count or higher. Vertical bars on the wings
and extensions lines indicate the average spread between the sibling of a pair
that inherited more and the one who inherited less.

Top: with respect to external counterparts with whom the parent community
was not strongly connected. Bottom: with respect to external counterparts
with whom the parent community was strongly connected. Note the vertical
log scale.
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Figure 4.5.6: Same as preceding figure [4.5.5], but considering all 146 split-
ting events: proportion of externally-connected members adopted by the ex-
tensions, wings, and intersect, respectively.

Note in both this and the preceding figure that the curves in the top chart
remain relatively close—indicating that influence from communities weakly
tied to the parent is inherited almost evenly by all parts of the sibling pair.
By contrast, the curves in the bottom chart diverge, indicating that influence
from communities strongly tied to the parent is inherited disproportionately by
the siblings’ intersect—especially influence in the form of high-CRC nodes.
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Figure 4.5.7: General high-CRC adoption patterns (disregarding old/new and
intercommunity tie strength) are largely similar between sibling pairs (top)
and comparable pairs of a new child and a non-sibling community with which
it shares a similar overlap (bottom).
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[The computer scientist] builds her castles in the air, from air,
creating by exertion of the imagination. Fewmedia of creation
are so flexible, so easy to polish and rework, so readily capable
of realizing grand conceptual structures…

Fred P. Brooks

5
ConcludingNotes

5.1 Contributions

We presented cambridge, a general technique for evolutionary analysis of a dy-
namic network via a community-attribute graph model (AGM). By making com-
parisons between AGMs fit algorithmically to each of a series of annual snapshots
of a graph, we are able to quantify the evolution of graph structure in terms of
the relationships between communities over time. Applying our methodology to
a bibliographic network of more than a quarter-million nodes and eight million
edges, we presented evidence that, in the process of community division, well-
connected nodes that are part of strong intercommunity ties behave differently
than equally well-connected nodes that are part of weak intercommunity ties.

Previous work by Leskovec et al. has established that the AGM model is su-
perior to other models traditionally used for evolutionary analysis, particularly in
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its ability to meaningfully describe the dense core of a network in terms of nodes’
relations to theperiphery structure, and for this reason,webelieve thatour attribute-
label evolutionary analysis is uniquely able to reveal insights about the evolution
of intercommunity interaction, rather than the evolution of communities considered
individually.

Our approach is not tailored to any particular network, or even any specific
data domain. Rather, it is intentionally general, seeking to encompass anddescribe
social interactions broadly characterized, and thus to ground the study of a diverse
class of social-like networks in common principles robust and flexible enough to
support the weight of future theory.

Finally, our work suggests many promising directions for future research.

5.2 Future directions

5.2.1 Model-based continuity criteria

We have only just begun to use the power of attribute-label models in evolution-
ary analysis, particularly for informing model assignments using the historical in-
formation that is available. Maintenance models such as FacetNet have demon-
strated the utility of considering the problems of static model fitting and intertem-
poral continuitydetection inoneunified step, rather thanas separateproblems[47],
and we believe that attribute labels will prove particularly amenable to this sort of
maintenance fitting.

5.2.2 Dynamic-aware attribute labels

Our results concerning the structure of recently-split communities indicate that
there is latent structure in dynamic social-like networks which is not completely
captured by static attribute-label models. While all models ultimately face this
limitation in the process of abstraction and generalization, theoretical advances in
evolutionary analysis may be able to inform useful extensions of structural models
to provide ‘first-order corrections’.
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For attribute-label models, we imagine that these could either take the form
of history-aware labels—community labels whose interactions are influenced by
their individual and joint histories—or history-aware nodes, whose relations with
their own community labels (as well as those of others) is influenced by their per-
sonal histories. Our study of the history of network models indicates that manag-
ing the tradeoff between over-abstraction and over-complexification will be cru-
cial.

5.2.3 Generalized dynamic tensor models

In one sense (and especially for maintenancemodels), the power afforded by con-
sidering anetwork in time is that it gives us the ability to view the sameobject ‘from
multiple perspectives’—just as the rising waters of a flood can show more about
the contours of the land than can any static water level. Recently, various authors
have proposed tensormethods (which, broadly speaking, treat graphs parametrized
by implicit inputs) for network analysis [6]. For an additional axis along which to
consider a network, some tensormethods use an external, natural phenomenon—
such as time—while others use artificial or virtual phenomena—i. e., by resam-
pling graph data while ‘controlling’ for the presence of various nodes [63]. We
expect that the dynamic and combinatorial nature of tensor methods may be par-
ticularly amenable to the techniques we have explored in dynamic attribute-label
analysis, particularly in providing efficient fitting methods and natural evolution-
ary models.
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We’re expert enough to change the laws of physics
temporarily; how hard can wiring be?

Carl J. Romeo

A
Technical Detail

This appendix lays out the most important implementation details of the analytic
tools we developed in connection with this research.

A.1 Network construction

We explore networks by projecting them into graphs, ideally in ways that reflect
general features of the network, rather than artifacts of the projection.

A.1.1 Undirected, Unweighted Citations

Manydifferent graphsmaybeextracted froma full bibliographicdataset—co-author-
ship, co-citation,mutual citation, directedcitations, citationcounts (eitherdirected
or undirected) & c.—but in this work, we consider only undirected graphs of un-
weighted citations (where two authors are connected if at least one has cited the
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other in a published work within our dataset).
We expect many of our findings to extend generally to other forms of bibli-

ographic data; our focus on a single network type was intended only to facilitate
exploratory analysis in depth. Future work might explore the commonalities and
differences in applying our time-dynamic-community analysis to other bibliomet-
ric networks, bibliography of other academic fields, and to other settings where
the time-dynamic nature of network structure is of importance.

A.1.2 Recursively Trimmed Networks

All networks analyzed in this work have been pre-processed by removing discon-
nected authors and trees of authors from the graph. In the latter case, this is ac-
complished by recursively removing “leaves”: any authorwho, in the time-interval
under consideration, cited or was cited by at most a single colleague.

In terms of community-detection, we consider their case uninteresting—ei-
ther their single connection is sufficient for them to be included in one or more of
the communities that their connection is a member of, or it is not—and, since we
do are not analyzing popularity or other features which aremight be influenced by
the additionof leaves and trees, theoperationdoesnot affect themodel predictions
over classifications, merely simplifying the calculations involved.

A.1.3 Ego Networks

Subsample construction is a problem of particular importance—and particular
difficulty—in graph analytics. In most tabular settings, the complexity of analysis
scales linearly in the number of data entities and if size is ever prohibitive, useful
subsamples can safely be drawn at random from the data.

In graphical settings, however, network dynamics make it dangerous to dis-
card even unbiased segments of the data. It is often useful, therefore, to be able
to identify a subsample which is representative on a local scale, at least. One such
popular technique uses ego networks—the subgraph of nodeswhich are connected
to an “ego” node, minus the ego node itself—as locally-representative subsamples
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[32, 49]. While popularity and importancemeasuresof individual nodes is skewed
by this analysis (a node that’s very close to the ego can appear central in an ego
network, while being relatively unimportant on a global scale), the structure of
ego networks can often shed insight on network-structural patterns observable on
similar scales throughout the network. As our work concerns the trans-temporal
dynamics of community structure on local scales, ego networks are well-suited to
our analysis.

Elsewhere in thiswork,whenwementionegonetworks,wehave constructed
them by the process we described above for general networks: first, the candidate
set of authors is initialized to the set of authors citing or cited by the ego (in a pa-
per published before the considered date, for time-based samples). These authors
are connected with undirected, unweighted edges representing citation relations
(up until the considered date) and recursively trimmed to remove isolated nodes,
leaves, and trees with a single point of attachment.

A.2 Processing

A.2.1 AGMFit

All networks were fit with AGMs by Jure and Leskovec’s AGMFit software [42],
described in §3.2. Except where otherwise noted, networks were fit to an ε-coher-
ence parameter of 0.05, a number of communities regularized by AGMFit’s own
l1-regularization-based heuristics, and with default termination-heuristic parame-
ters.

Each run of AGMFit was run separately, rather than seeded with the results
of the prior timeslice. (The number of communities was similarly re-fit on each
run.) We made this choice to avoid biasing our analysis of trans-temporal com-
munity dynamics—it is likely that were each fitting seeded with information from
the preceding timeslice, the fitted communities might exhibit trans-temporal cor-
relation solely by virtue of this algorithmic seeding. While we expect that future
attribute-label models may be designed to make use of historical network dynam-
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ics in community detection, we were not prepared tomake use of this information
at this point.

A.2.2 Community continuity detection

After detecting communities, we post-processed the detected structure to identify
continuity relationships, matching the set of communities detected in one snap-
shot with their best matches for “essentially the same community” in adjacent
snapshots. As AGMFit reports communities identified only by theirmembership
sets and coherence parameters, we performed this continuity detection based only
on communities’ respective membership vectors.

Given two communities A,B, we define their inner product ⟨A|B⟩ (or their
agreement ratio) as the size of their intersection, normalizedby the geometricmean
of their respective sizes:

⟨A|B⟩ := |A ∩ B|√
|A| · |B|

. (A.1)

We define ⟨A⟩B the influence of B on A (or in some contexts the survival ratio A to
B or the inheritance ration of A from B) as the size of their intersection, normalized
by the size of A instead:

⟨A⟩B :=
|A ∩ B|
|A|

. (A.2)

By analysis described in §3.4.1, we fixed a continuity criterion in terms of the
survival ratio of a community to its most-related successors:

accept
[
At → A(1)

t+1

]
iff:
(
At = [At+1]

(1)
t

)
and (A.3)((

⟨At⟩[A](1)t+1
> 0.8

)
or
(
⟨At⟩[A](2)t+1

< 0.5
))

,

where [A](k)t+1 is the community in snapshot t+ 1 to whichAt has its kth-highest sur-
vival ratio, and ⟨At⟩Bt+1

represents the survival ratio from At to Bt+1. The require-
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ment that successor communites may only be in relationship with the predeces-
sor fromwhom they inherit most eliminates the need for a tiebreaker mechanism,
so we identified successorship by direct search on community sets—which are at
most a few dozen communities each in any pair of snapshots.
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There is always a bigger fish.

Qui-Gon Jinn

B
Distributions inTheory

While locality was the first phenomenon of network graphs to be seriously studied
[66], node-degree distribution has seen at least asmuch analysis, from someof the
first papers in the field [3, 8]. This appendix provides a brief overview of the three
families of distributions most commonly referenced and observed. In particular,
we will attempt to shed insight onto why two popular distributions—the power-
law and lognormal distributions—are so often informally conflated.¹

¹A version of this discussion previously appeared in our survey of techniques for social-like
network analytics [62].
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B.1 Distribution definitions

Distribution B.1.1. The Poisson distribution with parameter λ is propor-
tional to λx/x! in x.

It has mode λ, mean λ, and asymptotic behavior as Θ̃
(
xΘ(x)

)
.

It is a common result by Erdős that an Erdős-Rényi graph has node-degree dis-
tribution well-approximated by a Poisson distribution with parameter λ = np
[24, 54].

DistributionB.1.2. The power-law (orZipfian [72–74], or sometimes Pareto
[59]) distribution with parameter (or exponent) γ is proportional to x−γ in x.

It has mode 1, mean HN,s−1
HN,s

(whereHN,s is theNth generalized harmonic
number, and asymptotic behavior asΘ(xλ).

The basic Barabási-Albert model with strictly linear attachment preference
induces a node-degree distribution approaching power-lawwith γ = 3 [8]; affine-
linear preferences with positive intercept induce a power-lawwith γ ∈ (2, 3) [60].
Note that as γ → 2 in a power-law node-degree distribution, the total number of
edges (≈ x−(γ−1)) diverges to∞.

It is a folk law thatmanyemprically-observeddistributions innetworkgraphs
can be approximated as power-law with γ ≈ 2.2 or≈ 1.2,² though other values in
the interval (2, 3) are also observed.

²Note that integrating over a power-law distribution with γ = 2.2 yields a power-law distribu-
tion with γ = 1.2.
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dist. asymptotic asymptotic-log
Poisson Θ̃

(
x−Θ(x)) Θ(−x log x)

lognormal Θ
(
x(μ−log x)2/σ2) Θ(−(log x)3)

power-law Θ
(
x−λ) Θ(−1)

Figure B.2.1: Asymptotic and asymptotic-logarithmic behavior of Poisson,
lognormal, and power-law distributions.

Distribution B.1.3. The lognormal distribution with parameters μ, σ2 is pro-
portional to exp[−(ln x − μ)2/σ2] in x, or N(μ, σ2) in ln x.

It has mode exp[μ − σ2], mean exp[μ + σ2/2], and asymptotic behavior
asΘ

(
x(μ−log x)/σ2

)
.

B.2 Asymptotic behavior and similarities

Figure B.2.1 reports the asymptotic behavior of these three distributions, aswell as
their asymptotic logarithmic behavior, to illustrate the character of the asymptotic
tail. (Less-negative asymptotic-logarithmic behavior implies a thicker tail.)

Note that while the distributions’ tails become fatter moving down the ta-
ble, the gap between the Poisson and lognormal asymptotic-logarithmic tails is
polynomial, while the gap from the lognormal to the power-law is merely polylog-
arithmic. For this reason, it is often much more difficult to distinguish power-law
distributions from lognormals than it is to distinguish Poisson distributions from
either.

Mitzenmacher additionally proposes a fewsimplemechanismsbywhichpower-
law and lognormal distributions each arise [53], including the following result:

TheoremB.2.1. In [53]. A mixture of lognormal distributions with identical σ2 and
μ mixed according to an exponential (e−rx in x) distribution is marginally power-law.
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This procedural identity provides some insight into the similarity and dis-
tinction between power-law and lognormal distributions in generative terms, a
fuller discussion of which is beyond the scope of this survey. Interested readers are
directed to Mitzenmacher’s survey work [52, 53] as an introduction to the topic.

In summary, though, power-lawand lognormaldistributions are significantly
more similar in tail behavior thaneither is to thePoissondistribution, and formany
purposes, the distinction is disregarded. Writes Mitzenmacher [53]:

From a more pragmatic point of view, it might be reasonable to use
whichever distributionmakes it easier to obtain results…The recent
work argues that for at least somenetwork applications the difference
in tails is not important[, but w]e believe that formalizing this idea is
an important open question.
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