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Abstract

Confidentiality of sensitive information is crucial to the se-
curity of modern mobile phone operating systems. To ad-
dress this concern, security researchers have proposed var-
ied methods for detecting exfiltration of sensitive data via
both ‘dynamic’ and ‘static’ information flow analysis, often
acknowledging their limitations in detecting side-channel
communication, such as timing-channel methods. However,
we demonstrate that such a side-channel attack is extremely
trivial to design, presenting a simple clock-based protocol
for exfiltrating arbitrary strings of data using timing signals
in 10 lines of Java code. We present an implementation of
our protocol, demonstrate that it avoids detection by popu-
lar tools for both dynamic and static analysis, and that it is
capable of cleaning data for exfiltration at rates of several
bytes a second. While this is too slow for exfiltrating large
quantities of sensitive information, we demonstrate that it
is more than sufficient for exfiltrating IMEI codes, location
data, other identifying tokens, and even alarming quantities
of private contact information.

1. Introduction

68% of American consumers own a smartphone, compared
to 73% who own a desktop or laptop computer [1], to say
nothing of the enormous worldwide usage, passing 2.6 bil-
lion users [2]. Of those, more than 70% use Android [3], a
Linux-based, open-source operating system whose function-
ality is extended by Google Play [4], a centralized service for
downloading third-party applications which has served more
than 50 billion downloads [5] of more than 1.8 million pro-
vided applications [6].
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The Android OS, furthermore, is the target of 98% of
malware applications targeting smartphones [7]. In contrast
to the personal-computer paradigm, where most sensitive
information is both difficult to locate and illegal to abuse,
mobile phones are rife with easily-accessed, personally-
identifiable or otherwise sensitive information of signifi-
cant interest to advertising companies, either for their own
use or for commercial resale. Access to this information
is often controlled by coarse-grained permissions controls,
but the ultimate use of any information permitted is ef-
fectively uncontrolled, and a 2010 survey of the Google
Play market revealed that approximately one third of the
most popular applications required access to both the Inter-
net network interface and location, camera, or audio data,
[8] let alone personally-identifiable information such as the
(device-unique) IMEI code, or other sensitive information,
such as contact data.

While a variety of methods have been developed to detect
malicious information flows in traditional computer systems
[9] [15] and web applications [16], Enck et al. identify four
ways in which the problem of monitoring information flow
is more difficult on smartphones than in traditionally-studied
systems:

¢ “Smartphones are [relatively] resource constrained.”

e “Third-party applications are entrusted with several types
of privacy-sensitive information,” which may require in-
dependent tracking.

e “Context-based privacy-sensitive information...can be
difficult to identify even when sent in the clear.”

e “Applications can share information.”

These challenges, combined with novel sorts of sensitive
information to discover and exfiltrate, necessitate a renewed
and redesigned approach to information flow analysis.
Fortunately, the security community has not been com-
pletely negligent in this regard. We discuss published tech-
nologies for information flow analysis (in section 2), discuss
a basic side-channel protocol which exfiltrates information
entirely undetected by these methods (in section 3), describe
our implementation and testing of our exploit (in section
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4), discuss its practical limitations and security implications
(in section 5), and conclude with general observations and
lessons for mobile information security (in section 6).

2. Background: Information Flow Analysis
2.1 Dynamic Analysis: TaintDroid

One versatile tool for detecting application-level leaks of
sensitive information at runtime is dynamic taint analysis,
which assigns ‘taints’ to sources of sensitive information,
and thereafter propagates them across variable assignments,
calculation results, interprocess messages, etc. Then any at-
tempt by an application to pass a tainted variable to an ex-
ternal network interface or other communication channel
can be interpreted as a (potential) attempt to exfiltrate some
derivative of the original sensitive information.

TaintDroid, designed by Enck et al. is one implementa-
tion of this technique for the Android platform [7] which
tracks taints in real-time during program execution by:

e instrumenting Android’s JVM interpreter to track variable-
level assignments within a process,

e instrumenting the Android system’s inter-application
message passing logic to track data passed between pro-
cesses,

e patching native libraries to track taints at the method level
to track data mutated by standard library calls,

¢ and patching system-level filesystem logic to track data
written to persistent storage in files.

In 2010, the authors used TaintDroid to examine 30 popular
Android applications, and “found 68 instances of potential
misuse of users’ private information across 20 applications.”
In a longitudinal follow-up study conducted in 2012, they
found that 12 of the 18 applications for which updated ver-
sions could be obtained had persistent or new instances of
misuse [8].

Their work extended that of previous authors who had ap-
plied dynamic analysis to find information leaks in a desktop
setting, either by environment emulation [9] [10], library in-
strumentation [11] [12], or JVM hooks [13], updating their
work to tailor it to the demands of the smartphone computing
environment and the specific features of known data sources.

Previous work in information flow analysis in smart-
phones presented the possibility of intercepting outgoing
messages which contained certain known sensitive sub-
strings [], though, as Enck ef al. note in the original Taint-
Droid paper [7], this is easily circumvented by even the most
trivial encryption schemes.

2.2 Static Analysis

However, dynamic analysis has functional limitations which
prevent it from detecting certain data-leakage channels, in-
cluding implicit control flows, whereby control flow logic
can leak a few bits of information at a time while avoiding
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direct value-assignments which would cause taint propaga-
tion [17]. Graa et al. present a simple example':

1: function IMPLICITCLEAN(a)
2 b < false

3 c + false

4: if not a then
S: c < true
6 end if

7 if not ¢ then
8 b < true
9: end if

10: return not b
11: end function

Note that if a is true, then line 5 is not executed (and so c is
not tainted), but the b is set to be true on line 7. If ¢ is false,
then line 5 is executed, but line 8 is not, and so b is left as
false. In neither case is b tainted as of its return on line 10.

While understanding the relationship between the values
of variables in control-flow statements and the code executed
in the controlled logic is necessary to detect this sort of leak,
it is important to realize that it is not enough to propagate
taints from the variables which control, say, an if to any vari-
ables set inside the relevant block. In Graa er al.’s example
above, for example, such an approach would still fail to prop-
erly propagate a’s taint to b.

Instead, any analysis approach must take into account
the logic which may be counterfactually executed, and the
logic invoked for any possible value of variables conditioned
upon. Such methods are known as static analysis, since in-
vestigating the counterfactual codepaths is performed stati-
cally, rather than through (dynamic) real-time observation of
a particular run.

Graa et al. provide both a theoretical model [17] and a
working implementation [18] of an analysis engine which
uses static analysis to determine implicit information flows,
then dynamic analysis to monitor (and prevent) disallowed
taint-to-sink propagation. Their work builds on prior work
in static analysis of known conditional idioms [19], the ap-
plication of these techniques to inform runtime dynamic
analysis in a traditional computing setting [20], and analy-
sis of certain implicit flow idioms based on Fenton’s Data
Mark Machine model [21]. In particular, they use the more-
general information-lattice model proposed by Denning [22]
to reason about implicit flows, then apply the combined
static/dynamic approach of BitBlaze [20] within the Taint-
Droid instrumentation framework [7].

! Graa, Cuppens-Boulahia, Cuppens, and Cavalli present this example in
a paper titled “Detecting control flow in Smarphones” [sic/, which was
accepted to the 4th IEEE International Conference on Cyberspace Safety
and Security, despite their failure to explain anywhere in their paper what
exactly a ‘smarphone’ is. This realization served to further undermine our
already-thin faith in the power of academic peer review.
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3. Basic Clock-Based Communication
3.1 Algorithm and Explanation

We present an algorithm for transfering relatively short
strings of tainted data to untainted variables which evades
detection by either dynamic or static analysis, as follows:
1: function TIMINGCLEAN(x, £, t)
> x is a £-long bitstring; ¢ is the timing threshold.

2: 7 < ALLOCBITS(?)

3: for i € [0,¢) do

4 pretime <— SYSTEMTIME
5: if z[i] then

6: SLEEP(2t)

7: end if

8: curtime <— SYSTEMTIME
9: if (curtime — pretime) > ¢ then
10: r[i] < 1

11: else

12: r[i] 0

13: end if

14: end for

15: return r

16: end function

The contents of the functional loop are lines 4 through 13,
inclusive. This logic leaks a single bit of information via the
system clock—or more precisely, via the difference between
the current value of the system clock and the recorded value.
If the relevant bit of the sensitive data was set, the difference
will be large (in particular, larger than the threshold ?), but if
the bit is not set, then the difference will be negligible (and
thus much less than ¢, for appropriate values of t).

3.2 Analysis and Potential Methods of Detection

Assuming that SYSTEMTIME is not tainted and SLEEP has
no side effects and touches no taint sinks, this algorithm does
not propagate taint from z to r under either dynamic or static
analysis. Under dynamic analysis, 2’s taint is propagated
nowhere; under static analysis, it is propagated to the call
to SLEEP, but since the latter has no side effects, no further.
In either case, r will carry no taints, and can be sent across
the network without detection.

While Graa et al. attempt to prove formally that static
analysis avoids under-tainting such as this, the mere intro-
duction of a system clock violates the Denning information-
lattice model [22] upon which they rely. More troublingly,
a large variety of external data sources can serve in this
role, since the ‘clock’ need only be able to distinguish be-
tween near-instantaneous and aribitrarily-long time delays.
Hence, attempts to taint SYSTEMTIME itself can be avoided
by modifying the algorithm to use battery charge level?, de-

2The third-party Dropbox application, for example, avoids battery-
intensive syncing operations when the battery is below a certain level of
charge, and is an example of the sort of application which would appear as
a false positive if battery information is tainted.
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vice temperature3, or other innocuous and untainted sources
which vary over time. Alternatively, a parallel timer applica-
tion (itself using SLEEPS or some expensive computation to
keep rough time) or even Internet access to a third-party web
server (potentially controlled by the exfiltrator) can serve the
same role, while being impossible to taint without causing a
taint explosion.

Similarly, it is infeasible to mark SLEEP as a taint sink,
given the significant potential for false positives, and in any
case the ease of developing around it by invoking some ex-
pensive computation or other time-consuming method (such
as file I/0O, or even innocuous user prompts) instead.

4. Implementation, Testing, and Analysis
4.1 Android Implementation Details

To test our hypothesis that we can use timing channels to
leak information while avoiding taint detection, we wrote
three apps that sent the IMEI code of the device to a remote
server in three different ways. The IMEI code is a fifteen
digit code unique to every mobile device and is indicative
of the type of data that taint propagation aims to protect -
there is only one way for an app to get the information (a
system call), so it is easy to introduce a taint at that point
of contact. Once the code has been tainted, the taint can be
propagated throughout the code’s lifetime, and TaintDroid
should be able to detect when the code is sent to a remote
server.

Our three apps are functionally identical except for the
ways that they internally process the IMEI code once they
receive a tainted version from the Android operating system.
Each app has a button creatively titled “Leak my data” that,
when pressed, calls a service to get a tainted IMEI code,
processes it, and sends out the IMEI code to a remote server.
For our purposes, we simply send out the IMEI code to a free
HTTP Post dumping server [23] and manually verify that the
received IMEI code is correct.

We use our first app, a naive data leaker, as a control
case to verify that TaintDroid indeed works as advertised.
The naive data leaker does not attempt to evade the taint in
any way - it simply sends the same piece of memory that is
returned by the system call to get the IMEI code.

Our second app uses an implicit control flow to avoid
taint detection. We loop through each digit of the tainted
IMEI code and compare the digit to each of 0 — 9. If we
find a match, we add the matched digit to an untainted IMEI
code that we are constructing. In this way, we construct an
untainted piece of memory that has the same data as the
original tainted IMEI code. Then, we simply send out the
untainted IMEI code through the network instead of using
the tainted IMEI code.

3 While device temperature doesn’t evolve monotonically over time as do
time or charge, we can easily modify the algorithm to replace the SLEEP
with a loop that waits until it changes more than a certain amount away
from its recorded base value, then breaks.
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Finally, our third app uses timing channels to avoid taint
detection. Like our second app, we loop through each digit
of the tainted IMEI code to construct a new piece of memory
that has the same information as the original tainted IMEI
code but which is untainted. For each digit, we record the
current system time, read the value d of the digit, and sleep
for 100 + 100d milliseconds®*. After waking up, we subtract
the current system time from the recorded system time and
use it to guess what the original digit from the tainted IMEI
code was. We add this digit to an untainted piece of memory.
After looping through all the digits of the original IMEI
code, we send out the untainted IMEI code through the
network. To avoid the problem of our timing attack bringing
the UI to a halt and triggering Android’s warnings about
unresponsive apps, we simply run the timing attack in a
background thread, which Android makes easy by providing
Java’s simple interface for running background threads.

We would like to emphasize how little effort is required
to transition from a naive data leaker to one that uses timing
channels. In particular, once we had the naive data leaker
running, it only took roughly 10 lines of code to turn it into a
data leaker that used timing channels. To give some context,
while it took 104 hours to successfully install TaintDroid
and create a testing environment, it took roughly 3 hours to
develop the three apps that leaked the IMEI code in different
ways.

4.2 TaintDroid Analysis

We installed our three data leakers on a system running
TaintDroid and had each one send the IMEI code to a re-
mote server. As expected, TaintDroid successfully caught the
naive data leaker, but it did not catch either the implicit con-
trol flow leaker or the timing channel leaker. Furthermore,
while we observed a slight delay between the times when
we clicked the “leak my data” button and when the server re-
ceived the timing-channel-cleaned IMEI code, the delay was
never more than 3 seconds long. With the leak happening in
the background, there was also no noticeable UI lag.

4.3 Static Analysis

We would like to have run our three apps on a system with
the static-analysis infrastructure proposed by Graa et al.
to avoid under-tainting, but the authors have not released
the source code for their analysis engine. Instead, we can
formally demonstrate that Graa et al.’s own proof model [17]
fails to recognize the timing signal in TIMINGCLEAN as an
implicit flow.

Their static-analysis proof model understands flow of in-
formation from variables to conditions, conditions to vari-

4 This is a slight modification from the TIMINGCLEAN algorithm presented
above, intended to simplify the encoding/reconstruction of decimal infor-
mation. A time-signal length of 100 milliseconds per timestep was roughly
determined to be adequate for communication, but could easily be lowered
(to speed up cleaning potentially at the cost of accuracy) or raised (to in-
crease reliability at the cost of speed).
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ables, and variables to variables. So, stepping through the
TIMINGCLEAN pseudocode above, we see the following
taint propagations:

2. 7 <= ALLOCBITS(¢) = Taint(r) < Taint(¢)

3. pretime ¢~ SYSTEMTIME =
Taint(pretime) < Taint(SYSTEMTIME)

4. for i € [0,¢) do...end for = Taint(i) < Taint(¢)

5. if z[i] then SLEEP(2¢) end if =
Taint(SLEEP) < Taint(z) & Taint(¢)

8. curtime < SYSTEMTIME =
Taint(curtime) <— Taint(SYSTEMTIME)

9. if (curtime — pretime) > ¢ then 7[i] < 1 else 7[i] < 0
end if =
Taint(r) < Taint(pretime) @ Taint(curtime) & Taint(t) &
Taint(¢) = Taint(SYSTEMTIME) @ Taint(¢) @ Taint(¢)

Note that the taint on x is propagated nowhere but to
the call to SLEEP (which, as a system-lvel call, propagates
taints to its return values and side-effects—of which there
are none), while r has adopted the taints of SYSTEMTIME
(which, as we argued in section 3.2, cannot feasibly be
tainted), ¢, and ¢. Since ¢ is a constant corresponding to the
timing sensitivity and £ is the length of the data (presumably
known ahead of time, for information such as the IMEI or
location readings), neither need be tainted since both can
simply be hardcoded. So r will carry no taints from x, and
indeed, no taints at all.

The decimal-encoding approach we employed in our im-
plementation has identical taint assignments, and by similar
proof successfully copies the information into a clean vari-
able for return.

5. Implications and Limitations
5.1 Limitations of Timing Channels

Our implementation was successful in a laboratory setting,
though timing channels may be expected to have limitations
in practical settings.

First, the timing attack takes much longer than the im-
plicit control flow attack, owing to the usage of explicit-
duration sleeps—potentially up to 15 seconds for a 15-digit
IMEI code, though that time could be reduced with a smaller
sleep time and more efficient algorithm. Our choice of 100
milliseconds per timestep was rather arbitrary, and could
be tuned for a particular usage-environment (even dynam-
ically, by a clever application), though we expect that sched-
uler nondeterminism will place a lower bound on how short
we can make relevant time-interval steps. A more-efficient
encoding scheme (binary, rather than decimal, as in our
case) could also serve to decrease runtime, though not by
more than a multiplicative factor. While this extra time is
spent sleeping rather than computing (and so plays some-
what nicely with concurrent applications), it nevertheless
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places practical limitations on the rate at which data can be
exfiltrated.

The second problem is that explicitly making a thread
sleep introduces the risk of the thread being de-scheduled
for much longer than anticipated, thus throwing off the re-
construction of the sensitive data. At best, we get a clearly-
invalid time-interval and can re-attempt, but it’s possible that
we accidentally get an incorrect interval which appears to be
valid. We did not experience this problem in the testing en-
vironment, but in a real setting, users may very well be run-
ning multiple apps at the same time. While we can eliminate
potentially-errant sleeps by, again, using a binary encoding
scheme, rather than our decimal encoding, we are neverthe-
less bound to using some sort of system call to observe our
clock time (or status, for alternative clock-like channels),
which will by design have to allow for system blocks and
descheduling.

One solution to this is to take multiple measurements of
each digit and take the minimum of the measurements. This
would increase the overall time it takes to reconstruct the
IMEI code, but would help sample out scheduler effects,
since it requires only that a single run (of arbitrarily many)
be re-scheduled within less than the time threshold of the
requested sleep time.

Another solution would be to use expensive computations
to introduce non-blocking time delays, though proper im-
plementation would need to be carefully adjusted to sched-
uler dynamics in order to avoid inadvertent scheduler pre-
emptions. We do not present implementations of these so-
lutions, however, as our timing algorithm was, in practice,
sufficient.

5.2 Security Implications

Both the original and follow-up TaintDroid papers conclude
with the sentence “Our findings demonstrate the effective-
ness and value of enhancing smartphone platforms with
TaintDroid.” Graa et al.’s original static-analysis paper con-
cludes:

We prove that our system cannot create under taint-
ing states. Thus, malicious applications cannot bypass
the Android system and get privacy sensitive infor-
mation through control flows...Once the implemen-
tation is finished, we will be able to evaluate our ap-
proach in terms of overhead and false alarms. We will
also demonstrate the completeness of the propagation
rules.

The authors’ follow-up paper, describing said finished im-
plementation, concludes that “ By implementing our ap-
proach in Android systems, we successfully protect sensi-
tive information and detect most types of software exploits
caused by control flows.” [18]
Notwithstanding these claims, we demonstrate that roughly

10 lines of Java code evade these methods of control-flow
analysis in a matter of seconds, and are more than capable of
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leaking IMEI codes, location data, and other short strings of
sensitive information to external servers. Since our timing-
based cleaning is capable of running in the background with-
out noticeable Ul lag, even our simple timing-channel attack
is capable in theory of processing several kilobytes an hour,
sufficient to exfiltrate, for example, about a hundred contact
name/number/email entries, if properly compressed, in that
time.

Moreover, since our timing channel can be applied to ar-
bitrary computed data, it can be employed at any step in a
data-exfiltration pipeline. A malicious application can per-
form any arbitary precomputation or compression before
‘cleaning’ the resulting (tainted) data, and any desired en-
cryption to evade detection [14] before sending the informa-
tion in the clear.

For example, while high-bandwidth data from camera
and audio sensors may not be so easily exfiltrated whole-
sale, a malicious application eavesdropping on phone audio
can recognize audio cues from either people or nearby audi-
ble advertisements [24], and report over the network a clean
message that such a cue was detected. Similarly, continuous
accelerometer data sufficient to monitor a user’s physical be-
havior [25] can be parsed to produce discrete information
terse enough to be cleaned and transmitted across the net-
work in close-to-realtime.

6. Conclusion

We present a timing-channel exfiltration algorithm that
evades detection by both dynamic and static analysis. We
reiterate that, despite sounding like 133t h4xOr witchcraft,
this is by no means a sophisticated attack—in fact, it was
designed by two undergraduates with nothing better to do,
and took less time to develop and test than it did to install
and set up an Android build environment.

Our experiences have supported the pessimistic conclu-
sion that if you do not wish for all of your base to belong
to advertisers (and other h4x0rs), information-flow analy-
sis methods are insufficient to protect sensitive informa-
tion on mobile phones. Instead, with the possible exception
of high-bandwidth data (e.g. from microphone and camera
sensors—though not feature-extracted or semantic data de-
rived therefrom), it is likely necessary to prevent untrusted
third-party applications from any access to information that
should not be leaked wholesale over the network. Neverthe-
less, surveys of the Android application market have found
that a third or more of third-party applications require access
to both sensitive information and the Internet.

We conclude that mobile information security is pwned.
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