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Abstract

I present models of matching markets with non-homogeneous agent
preferences (drawn from the computer science literature on network
structure). Some plausible preference structures support significant
incentives to manipulate matching outcomes. Established theoretical
approaches and simulation techniques show that the scope for ma-
nipulation remains substantial as such markets become large and un-
balanced, contrasting prior work on homogeneous preferences, which
finds little such scope. Scope for manipulation corresponds to core
size and differences in agents’ welfare between core outcomes. These
results suggest that largeness and cross-side imbalance are insufficient
to explain empirical observations of small cores in matching markets;
I discuss alternative explanations.

1 Introduction

I consider matching markets where both sides have preferences over po-
tential matches, and no common numeraire (or contract details) allow for
transfer of utility. Examples of importance and interest include allocation
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of students to schools at primary through graduate levels, allocation of mi-
grants to settlement destinations, matching of participants in bipartite dat-
ing pools, construction of exclusive social organizations, and some settings
of assignment of entry-level workers to employer firms.

As matching markets are used in practice to coordinate and allocate the
labor, training, and education of hundreds of thousands of participants each
year—typically in multi-year commitments—their efficiency can be of sub-
stantial economic importance. Correspondingly, the outcomes of matching
can be of such importance to participants that markets provide significant
incentives for strategic manipulation by sophisticated participants (Pathak
and Sönmez (2008)). Thus, matching-market designers are directly con-
cerned with the choices and incentives that mechanisms offer to market
participants, and their effects on allocation dynamics in equilibrium (Roth
(2002)).

Previous theoretical studies of matching markets have suggested that
agents’ abilities and incentives to manipulate generally vanish as the size
of the market grows (e. g., Immorlica and Mahdian (2005)). I find, how-
ever, that these theoretical results depend crucially on the preferences of
agents lacking locality structure; in matching markets with localized pref-
erence structures, agents’ incentives to manipulate can instead robustly fail
to vanish. This suggests that observations of large markets with negligible
scope for manipulation (and localized preferences) may not be explained by
existing theory of matching-market structure. Alternate explanations are
required, and will require further structural analysis of matching markets of
interest.

1.1 Motivation and background

The literature on matching-market mechanism design has shown that ex
post stability of outcomes, and ex ante incentive-compatibility of mecha-
nisms, are of primary importance to the success of an allocation marketplace
(Roth (1984, 2002)). Intuitively speaking, ex post stability is the condition
that it is an equilibrium for agents to follow the assigned allocation (rather
than seeking a match outside it, or electing to later recontract). Gale and
Shapley (1962) have shown that, in one-to-one1 matching markets, stable
allocations exist in general and are efficiently computable. In fact, stable-
allocation-finding mechanisms are now used in a variety of settings where

1In many-to-one and many-to-many settings, existence of stable allocations generally
requires either full substitutability (Roth and Sotomayor (1990)) or full complementarity
(Rostek and Yoder (2019)).
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‘unraveling’ deviation from mechanism assignments would otherwise pose
significant welfare costs to the market (Roth (1984); Roth and Xing (1994);
Niederle and Roth (2003); Fréchette et al. (2007)).

However, stability does not necessarily determine a unique allocation.
Multiple stable allocations may exist, and individual agents may have suffi-
cient market power to influence which equilibrium obtains. More explicitly,
a nontrivial core (which, in this setting, coincides with the set of stable al-
locations) excludes the possibility of a core-selecting mechanism for which
truth-telling is a dominant strategy for all participants. An agent who se-
lects a desirable allocation from the true core—and (mis)represents that
only that allocation’s outcome is acceptable to them—will be granted that
outcome by a core-selecting mechanism (Gale and Sotomayor (1985)). Thus,
agents deviating from truth-telling can manipulate a core-selecting mecha-
nism into assigning them their most-favored outcome among those achieved
in the core.

Therefore, ex ante incentive-compatibility2 of a core-selecting mechanism
can only be assured for agents who are assigned their most-favored core
outcome when truth-telling. Knuth (1976) demonstrates that this can, at
best, be simultaneously assured for all agents on one side of the market
(unless only one core allocation exists).

It follows that the available incentives for strategic manipulation are
determined by the gap in welfare (of the mechanism-disfavored side) between
the subjectively optimal and pessimal core outcomes.3 Insofar as strategic
manipulation degrades welfare by risking allocative inefficiency (and creating
its own wasteful investment race), it threatens the primary objectives of
mechanism design. Agents’ welfare gaps among core allocations are therefore
of direct concern to the matching-market designer.

Prior work has investigated within-core welfare gaps by bounding core
size. Roth and Peranson (1999) observed qualitatively small cores in the
National Resident Matching Program and they conjectured, from simulation
results, that (uniformly-)randomly-drawn fixed-size preference lists yielded
vanishingly small cores as markets became large. Immorlica and Mahdian
(2005) proved this conjecture. Kojima and Pathak (2009) and Ashlagi et al.
(2017) demonstrated comparable results for balanced and unbalanced many-
to-one markets, respectively. I further discuss prior work on core size in large

2i. e., compatibility of a truth-telling strategy with agents’ own incentives.
3Furthermore, the presence of manipulation by the mechanism-disfavored side of the

market creates game-theoretic incentives for the mechanism-favored side of the market
to manipulate in order to discourage the other side’s manipulation. Gale and Sotomayor
(1985) analyze the strategic equilibrium of this game in the perfect-information setting.
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matching markets in § 5.1 below.
Thus far, the literature has considered classes of homogeneous models

of markets under which core size (and welfare gap size) vanishes as the
number of agents in the market becomes large, and as agents’ preferences
over partners become more correlated. The present work contrasts these
results by presenting a class of non-homogeneous market models. These
models are inspired by analogy to a class of models for inter-agent networks
drawn from the computer science literature on network structure, which were
originally presented to model empirical observations of network dynamics.4 I
demonstrate that, under non-homogeneous models where agents’ preferences
exhibit sufficient locality, optimal–pessimal welfare gaps remain substantial
as markets become large. Under some specifications, welfare gaps grow as
local preference correlation increases.

1.2 Overview of results

My model of college admissions markets extends the Kojima and Pathak
(2009) model of large matching markets. Their model is characterized by (a)
a large number of colleges, of which each student finds only a small number
acceptable, and (b) random, conditionally independent agent preferences. I
extend this model by weakening the latter condition and allowing a student’s
opinion of one college to correlate with their opinion of another (though I
maintain ex ante symmetry between schools, and between students, for my
main results).

By introducing locality to the structure of student preferences, I find
that the core is non-vanishing under certain simple and natural preference
structures. Furthermore, introducing preference locality to the Ashlagi et al.
(2017) model of unbalanced random matching markets, I find that even
markets with significant imbalance (in the number of agents on each side
of the market) can have large cores. While these results do not contradict
the theoretical conclusions of the prior literature on random large markets,
they suggest that mere market largeness may not be sufficient to explain
observations of small cores when preference locality is present.

I augment these theoretical results with simulation results that demon-
strate that core size and manipulation incentives are substantial in magni-
tude in practice. These simulations demonstrate the persistence of a large
core under significant imbalance, and show that the otherwise sharp advan-
tage afforded to the short side of a homogeneous market is attenuated by

4I further discuss the relevant network-structure literature in § 5.2 below; for a more
thorough treatment, see Chapter 2 of Rheingans-Yoo (2016).
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preference locality. Finally, I discuss plausible alternative explanations for
empirical observations of small cores in some large matching markets with
preference locality.

2 Model

I extend the random matching market model of Kojima and Pathak (2009)
to support non-homogeneous structure among students’ preferences. This
model likewise embeds the “correlated preferences” models of Ashlagi et al.
(2017), allowing for direct comparison of homogeneous and non-homogeneous
preference structures.

2.1 Matching markets, core size, and market power

I consider one-to-one and many-to-one matching markets, with colleges de-
manding q ≥ 1 matches in general and students demanding precisely one
match. Appendix A presents standard formal definitions of matching mar-
kets and stability.

In matching markets, the core5 coincides with the set of stable matchings
(Roth (1985)). Following Immorlica and Mahdian (2005), I consider core
size in terms of the fraction of agents with multiple stable matches6 and
formally describe the core as small or vanishing if the expected fraction
of agents with multiple stable matches asymptotically vanishes as a market
becomes large in the number of agents. Correspondingly, the core is formally
large or non-vanishing if the expected fraction fails to vanish as the market
becomes large.

In matching markets, core size creates scope for agents to manipu-
late core-selecting mechanisms (Gale and Sotomayor (1985)). Kojima and
Pathak (2009) argue that manipulability is best understood in terms of
market power—the ability for an agent’s strategic rejection of a proposal to
affect the set of other proposals that agent will later observe—and I adopt
this term in the same sense where appropriate.

2.2 Random markets

Given a set of colleges C and a set of students S, a random market is a tuple
Γ̃ =

(
C, S,PC ,PS

)
, where PC is a probability distribution on orderings of

S ∪ {∅} and PS is a probability distribution on orderings of C ∪ {∅}. Each

5i. e., the set of outcomes on which no coalition can unilaterally improve.
6i. e., matches achieved in some stable matching.
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random market induces a market by randomly generating preferences of each
college c by drawing from PC and preferences of each student s by drawing
from PS .7

2.2.1 Kojima–Pathak random markets

Kojima and Pathak (2009) present a special case of this random market
model for PC a fixed realization of colleges’ preferences and PS given as
follows:

• Fix k > 0 a positive integer.

• Fix D = (pc)c∈C a probability distribution on C.

• Assign each student’s preferences by drawing k colleges fromD without
replacement, then appending ∅ (whereafter the order of successive
colleges is immaterial).

Effectively, each students’ preference-ordering of colleges is composed of k
independent draws from a common distribution on colleges D. I hereafter
call random markets of this form Kojima–Pathak random markets.

2.2.2 A simple example of preference locality

Consider a simple linear model of preference locality structure, analogous
to the one-dimensional regular ring lattice that Watts and Strogatz (1992)
introduce to model locality in network structure. For a positive integer
k, let a uniform-all-students, uniform 1-dimensional k-nearest-colleges ran-
dom market (hereafter k-nearest-colleges random market when not otherwise
qualified) be a random market Γ̃ =

(
C, S,PC ,PS

)
with PC the uniform dis-

tribution over (complete) permutations of students and PS given as follows:

• Arrange the colleges C uniformly on a circle.

7 The present work models random markets with an expectation over colleges’ prefer-
ences PC , which has not been necessary in some prior work. It is necessary here because
certain realizations of colleges’ preferences (e. g., identical preferences, or subsequences of
a common linear preference ranking) force the core to collapse irrespective of students’
preferences. Thus, non-vanishing-market-power results cannot be demonstrated for fixed
colleges’ preferences in general ; we introduce an expectation in order to evaluate the
expected frequency of large cores.

As in the referenced works, I consider the possibility of manipulations under complete
information; randomness over preferences is introduced only to assess the frequency of
situations in which agents have incentives to manipulate.
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• Place each student s uniformly at random at a point on the circle.

• Let each student have preferences drawn uniformly at random from
the k nearest colleges, with all other colleges unacceptable.

Formally speaking, identify each college c ∈ C with a unique integral point
yc ∈ R/|C|Z; to generate the preferences of student s, select a point xs ∈
R/|C|Z uniformly at random, then return as s’s preferences a permutation
chosen uniformly at random of the colleges lying in the interval [xs, xs + k).

Remark 1. Immorlica and Mahdian (2015), in their Remark 2.7, con-
sider a related preference structure, where colleges are partitioned into pairs
with opposing rankings of students.8 Under this paired-colleges model, the
authors demonstrate that the fraction of agents with more than one stable
match fails to vanish as the number of agents grows large.

While the paired-colleges model serves as a counterexample to a general
vanishing-core conjecture, it is an unnatural model of preference structure,
and implausible in practice. The k-nearest-colleges model of the present work
relaxes the synthetic construction:

• Colleges’ preferences are drawn from a common distribution, rather
than constructed in opposing pairs.

• Students choose overlapping clusters of colleges, rather than disjoint
partitions.

In Appendix D, I further generalize the relevant conditions on prefer-
ence locality and provide more general models from the network-structure
literature with preference-structure analogues that support large cores.

2.3 Regular markets

Denote a sequence of random markets
(
Γ̃(1), Γ̃(2), . . .

)
, where each element

Γ̃(n) =
(
C(n), S(n),P(n)

C ,P(n)
S

)
is a random market in which

∣∣C(n)
∣∣ = n is the

number of colleges. A sequence of random markets is (k, q)-regular if there
exist positive integers k and q such that:

• For all n, and all preference-orderings �̃ supported in P(n)
S , exactly k

colleges are acceptable under �̃.

• Letting qc be the quota of students that college c can accept, qc ≤ q
for c ∈ C(n) for all n.

8I thank an anonymous referee for calling attention to this reference.
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•
∣∣S(n)

∣∣ ≤ qn for all n.9

Call a random market one-to-one if qc = 1 for all c ∈ C(n). Call such
a market balanced if

∣∣S(n)
∣∣ =

∑
c∈C(n) qc and (p, r)-unbalanced if

∣∣S(n)
∣∣ =

r + p
∑

c∈C(n) qc.

3 Results

I present a lower bound on core size and describe incentives to manipulate
stable matching mechanisms in k-nearest-colleges random markets. These
results apply to a broader class of models with preference locality; in Ap-
pendix D, I discuss a more general preference locality condition that yields
similar results.

3.1 Core size in large, one-to-one markets

Consider a sequence of random markets
(
Γ̃(n)

)
n∈N. For a random market

Γ̃(n), let α(n) denote the expected number of colleges with multiple sta-
ble allocations and let β(n) denote the expected number of students with
multiple stable allocations.

Theorem 3.1. Given a regular sequence of balanced, one-to-one, k-nearest-
colleges random markets, there exists ∆ > 0 such that:

• lim inf
n→∞

α(n)/n > ∆.

• lim inf
n→∞

β(n)/n > ∆.

Proof. The proof roughly follows that of Theorem 2 of Hassidim et al. (2019),
who use a similar construction to bound below the fraction of agents with
multiple stable allocations, in their matching-with-contracts setting.

Consider two students s1, s2 ∈ S(n) and two colleges c1, c2 ∈ C(n). Let
the event E(n)(s1, s2, c1, c2) denote the case where:

1. College c1 prefers s1 to s2. Formally, s1 �c1 s2 �c1 ∅.

2. College c2 prefers s2 to s1. Formally, s2 �c2 s1 �c2 ∅.

9Following Ashlagi et al. (2017), I drop from the regularity conditions of Kojima and
Pathak (2009) the condition that all students be acceptable to all colleges. In these terms,
a regular sequence of Kojima–Pathak random markets with all students acceptable to all
colleges is what Kojima and Pathak (2009) call a regular sequence of random markets.
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3. The only students who find either c1 or c2 acceptable are s1 and s2.
Formally, for all s ∈ S(n)\{s1, s2}, ∅ �s c1 and ∅ �s c2.

4. The colleges that s1 finds most desirable are c2 and c1, in that order.
Formally, for all c ∈ C(n)\{c1, c2}, c2 �s1 c1 �s1 c.

5. The colleges that s2 finds most desirable are c1 and c2, in that order.
Formally, for all c ∈ C(n)\{c1, c2}, c1 �s2 c2 �s2 c.

Note that, in the event E(n)(s1, s2, c1, c2), the four agents have two stable al-
locations: {(s1, c2), (s2, c1)} (the student-optimal allocation), and {(s1, c1), (s2, c2)}
(the college-optimal allocation).

The first statement (lim inf
n→∞

α(n)/n > ∆) follows from Lemma 3.2 below,

which places a positive lower bound10 on the probability that a college c1
is involved in some such E(n)(s1, s2, c1, c2), and which holds for sufficiently
large n.

The second statement (lim inf
n→∞

β(n)/n > ∆) then follows by a counting

argument: each pair of colleges c1, c2 where an event E(n) occurs corresponds
to exactly one pair of students s1, s2 with multiple stable allocations.

Remark 2. The conditions that define E(n)(s1, s2, c1, c2) are unnecessarily
restrictive, in the interest of a cleaner bounds calculation. Theorem 3.1’s
proof would still hold with condition 3 weakened to require only that s1 and
s2 are the most preferable students (to c1 and c2) among those who find
c1 and c2 acceptable. Similarly, conditions 4 and 5 could be weakened to
require only that c1 and c2 are, in the the specified orders, the students’
most-preferred colleges among their feasible matches, and c1 and c2 could
be any two schools within k places, rather than necessarily adjacent. For
experimental estimates of the overall incidence of multiple stable matches in
k-nearest-colleges markets, see § 4.

Lemma 3.2. Fix an arbitrary ε > 0. There exists sufficiently large n such
that for each college c1 ∈ C(n) the event

E(n)
c1

:=
⋃

(s1,s2,c2)∈S(n)×S(n)×C(n)

E(n)(s1, s2, c1, c2) (3.1)

has probability bounded below by ∆ := exp[−k−1]
4k2

− ε.
10Specifically, ∆ = exp[−k−1]

4k2 .
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Proof. Fix an arbitrary c1 ∈ C(n). For different selections of (s1, s2, c2), the
events E(n)(s1, s2, c1, c2) are disjoint. There are n·(n− 1) possible selections
such that s1 6= s2 and yc2−yc1 = 1. Half of these events have zero probability
(when s2 �c1 s1). The probability of each of the other events is at least

1

2
·
(

1− k + 1

n− 1

)
(n−2) · 1

nk
· 1

nk
, (3.2)

where each term in this expression corresponds to an (independent) require-
ment11 from the definition of E(n)(s1, s2, c1, c2). Thus, the probability of the

event E
(n)
c1 is at least n · (n− 1) · 12 ·

1
2 ·
(
1− k+1

n

)
(n−2) · 1

nk ·
1
nk . The limit

inferior of this expression as n→∞ is ∆ := exp[−k−1]
4k2

.

3.2 Core size in large, unbalanced markets

Again let α(n) denote the expected number of colleges with multiple stable
allocations in a sequence of random markets

(
Γ̃(n)

)
n∈N, and let β(n) denote

the expected number of students with multiple stable allocations.

Theorem 3.3. Given a (k, q)-regular sequence of (p, r)-unbalanced, k-nearest-
colleges random markets, there exists ∆ > 0 such that:

• lim inf
n→∞

α(n)/n > ∆.

• lim inf
n→∞

β(n)/n > ∆.

Appendix B presents the proof, which proceeds by a similar construction
to Theorem 3.1, modified so that c1’s quota is filled, ensuring that c2’s
rejection of s1 forces c1 to reject some other student s2 in turn.

3.3 Incentives to manipulate in large, unbalanced markets

Fix some core-selecting mechanism and consider a sequence of random mar-
kets

(
Γ̃(n)

)
n∈N. For a random market Γ̃(n), let γ(n) denote the expected

number of agents who can improve their assigned outcomes by misreporting
their true preferences (when all others report their true preferences).

Corollary 3.4. Given a (k, q)-regular sequence of (p, r)-unbalanced, k-nearest-
colleges random markets, there exists ∆ > 0 such that lim inf

n→∞
γ(n)/n > ∆.

11To be precise, the second, third, fourth, and fifth requirements, respectively.
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Proof. Consider the argument of Theorem B.1. In event E(n)(s1, . . . , sq+1, c1, c2),
the four agents s1, s2, c1, c2 have two stable allocations: {(s1, c2), (s2, c1)}
(the student-optimal allocation), and {(s1, c1), (s2, c2)} (the college-optimal
allocation).

Whichever allocation the mechanism assigns, either of the disfavored
agents can improve their assigned outcome by instead (mis)reporting that
only their optimal match is acceptable. Applying Lemma 3.2 provides a
positive lower bound for the probability that any college is involved in such
an event, and thus, the expected fraction of agents with incentives to ma-
nipulate.

4 Computational experiments

I present simulation results that complement these theoretical results by
demonstrating the realized size of large cores in k-nearest-colleges random
markets. My approach follows Ashlagi et al. (2017), replicating certain re-
sults under their market specifications, then presenting analogous results
under models of preferences with locality. For each market specification, I
simulate a number of realizations by drawing random preferences indepen-
dently for each agent, and computing the stable match optimal for each side
of the market. I present additional figures in Appendix C.

4.1 Strategic incentives in unbalanced markets

The first experiment illustrates that preference locality can support scope
for strategic incentives and attenuate the sharp welfare effect of imbalance12

in a small market. I specify a k-nearest-colleges random market with 40
colleges, between 20 and 80 students, and k ∈ {3, 5, 10, 20, 40}. I simulate
30,000 realizations.

Figure 1 reports the fraction of matched agents who have multiple stable
matches; this fraction is small in unbalanced markets under homogeneous
(k = 40) preferences, but substantial for even substantially unbalanced mar-
kets where k = 3, 5, or 10.

Figure 2 reports averages across realizations of the matched students’
rank of matches under the student-optimal and student-pessimal stable
matches. The results for k = 40 replicate prior work by Ashlagi et al.
(2017), who describe the homogeneous case:

12cf. the sharp welfare effect of imbalance in homogeneous random markets demon-
strated by Ashlagi et al. (2017).
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Figure 1: Core size for |C| = 40 and |S| from 20 to 80.

[I]n any unbalanced market, the men’s average rank of wives
is almost the same under the [men-optimal stable match] and
[women-optimal stable match]. When there are fewer men than
women (i. e., fewer than 40 men), the men’s average rank of wives
under any stable matching is almost the same as under [random
serial dictatorship], with most men receiving one of their top
choices. When there are more men than women in the market,
the men’s average rank of wives is not much better than 20.5 [of
40], which would be the result of a random assignment.

But under more-localized (i. e., smaller-k) preferences, three differences
are apparent:

• The students’ welfare gap between optimal and pessimal matches is
substantially larger in unbalanced markets.

• The students’ welfare gap does not increase sharply as markets ap-
proach balance.

• Students’ absolute welfare (under any stable match) depends less sharply
on the imbalance.
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Figure 2: Matched students’ quantile rank of matches for |C| = 40.

Colleges’ welfare gaps and absolute welfare respond similarly to prefer-
ence locality; see Figures 5 and 6 in Appendix C.

4.2 Core size and allocation outcomes in large markets

I also present results of simulations of large unbalanced matching markets
under various specifications. Figure 3 reports the fraction of matched agents
who have multiple stable matches and matched students’ average rank of
matches (across 3,000 realizations) in a market with 400 colleges, between
200 and 800 students, and preferences given by the k-nearest-colleges model
for k ∈ {3, 10, 30, 100, 400}.

In general, as in the smaller specification, the size of the core and the
strategic incentives do decrease as the market becomes unbalanced, but
much more slowly under more-localized (i. e., smaller-k) preferences than
under the homogeneous specification. As an example: in a market with
440 students, 400 colleges, and k = 30, > 5% of matched students have
more than one stable match, and among students with more than one sta-
ble match, the average rank difference between their optimal and pessimal
match is > 7 (i. e., nearly a quarter of their preference list length). In the
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Figure 3: Core size and matched students’ quantile rank of matches for
|C| = 400.

homogeneous specification, the incentives are only an eighth as large. In a
more unbalanced market, the effect is even more stark—with 500 students,
400 colleges, and k = 10, > 5% of matched students have more than one
stable match, but with k = 400, < 0.24% do.

I present further simulation results for markets with q|C| ∈ {400, 1000, 4000}
college-seats, and for q ∈ {1, 4, 10}, in Figures 7–9 in Appendix C. The gap
in student welfare between the student-optimal and student-pessimal allo-
cations remains apparent, and the fraction of agents with more than one
stable match fails to vanish, as the market size grows.

4.3 Localized versus incomplete homogeneous preferences

It is apparent to visual inspection that in any of the above specifications,
matched students’ welfare (under any stable match) depends less sharply
on the cross-side imbalance under more-localized (i. e., lower-k) preferences
than under homogeneous preferences. This agrees with simulation results
of Ashlagi et al. (2017) on incomplete homogeneous student preferences (in
which students find some fraction of colleges unacceptable, and otherwise
draw preferences uniformly), suggesting that the welfare-flattening effect
could be driven by selectivity rather than preference structure. I confirm
this hypothesis with simulation results, but find that substantial welfare
gaps are not supported under incomplete homogeneous preferences.

By setting the probability that a student s finds a college c acceptable to
k/|C|, I specify incomplete homogeneous preferences under which students

14



Figure 4: Matched students’ quantile rank of matches under k-nearest-
colleges preferences (left) and similarly-selective homogeneous preferences
(right). Plot at left reproduces Figure 2.

are on average as selective as in a k-nearest-colleges model. Figure 4 reports
averages across realizations of the matched students’ rank of matches under
such a preference model, and under a k-nearest-colleges model.

While the absolute welfare effect of student selectivity is comparable—
attenuating the short-side advantage similarly in both specifications—market
power in unbalanced markets is only supported under the preference-locality
specification. A minor effect is visible in low-k specifications where students
are assigned slightly worse-ranked matches under the preference-locality
specification, regardless of imbalance size. This suggests, intuitively, that
certain forms of localized same-side correlation in students’ preferences can
be disadvantageous to students’ welfare, even holding selectivity constant
and setting colleges’ relative popularities to be equal.

Similar results are visible in simulations of |C| = 400 and |C| = 1000
markets, presented in Figure 10 in Appendix C.

5 Discussion

It is beyond the scope of the present work to present a comprehensive struc-
tural theory of matching-market dynamics. However, I discuss some ways
in which locality interacts with other structural properties of matching mar-
kets, and their implication for matching dynamics, presenting some ques-
tions for further investigation.
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5.1 Related work: matching markets

The proofs presented here use techniques for constructively demonstrating
market power (in the large-market limit) similar to those presented by Has-
sidim et al. (2019) in a setting of matching with contracts. I apply these
techniques instead to the setting of matching (a) without contracts but (b)
with locality in preference structure. This contrasts previous work on match-
ing without contracts that analyzes homogeneous models of large matching
markets, primarily through stochastic analysis of rejection chains, in one-
to-one (Immorlica and Mahdian (2005)), many-to-one (Kojima and Pathak
(2009)), and unbalanced (Ashlagi et al. (2017)) settings.13

This prior work has generally suggested that homogeneous large markets
exhibit vanishing market power (Immorlica and Mahdian (2005); Kojima
and Pathak (2009)) and in many cases small cores (Ashlagi et al. (2017)),
and that these features are generally strengthened by correlation among
preferences.14 The two examples of non-vanishing market power in the liter-
ature (excluding the knife-edge case of balanced markets) are the Immorlica
and Mahdian (2005) paired-colleges construction15, and the Hassidim et al.
(2019) case of college admissions with financial aid contracts. The present
work explains that both cases are essentially driven by localized preference
structures (localized to pairs of colleges or to sets of contracts with the same
college, respectively), and proposes the first plausible structural model of
preferences that supports market power in the absence of contracts.

5.2 Related work: network structure

My approach to modeling preference structure draws from the computer
science literature on network structure in large graphs. Early analysis of
large homogeneous graphs (Gilbert (1959); Erdős and Rényi (1960)) was

13Kojima and Pathak (2009) also consider the union of a bounded number of homoge-
neous models, to represent agent types. However, with a bounded number of agent types,
this model exhibits vanishing locality, as discussed in Appendix D.

14The primary form of correlation in the referenced literature is concentration of global
popularity. Ashlagi et al. (2017) consider a multiparameter model of correlated preference
structure, including a parameter for locality. However, their locality parameter induces
alignment between sides of the market, simultaneously shrinking the possible difference
between the student-optimal and college-optimal stable matches. Unsurprisingly, they
find that increasing this parameter does little to increase the size of the core (though
it does cause a slight increase under sufficiently unbalanced market specifications). By
contrast, I present a model of preference locality without cross-side preference alignment,
and find large cores supported under certain market specifications.

15See Remark 1 above, and Remark 2.7 in Immorlica and Mahdian (2005).
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conducted via combinatorial techniques similar to the existing literature
on large matching markets. However, the contemporary network-structure
literature has turned to non-homogeneous models to model structural fea-
tures empirically observed in real-world graphs—e. g., locality (Watts and
Strogatz (1992); Leskovec et al. (2009)); the small-world property (Leskovec
et al. (2005); Bordino et al. (2008)); power-law distribution of node degree
(Barabási and Albert (1999); Aiello et al. (2000)); self-similar subnetwork
structure (Chakrabarti et al. (2004)); and others (Boldi et al. (2011); Yang
and Leskovec (2014)).

The specific preference-locality structure I consider is inspired in form
by spatially-structured locality models for network graphs (Watts and Stro-
gatz (1992)). While I do not consider the analogues of more-sophisticated
generative models in this work, they do suggest that locality (in forms that
support market power in the large-market limit) can exist under genera-
tive models of a more natural flavor than the synthetic model presented in
the present work. In Appendix D, I state a generalized locality property
sufficient to yield my main results and suggest common generative network
models from the network-structure literature under which it obtains.

Market agents forming preferences over potential matches are plausibly
influenced by similar processes as agents forming ties in a network graph.
On this basis, I propose that further work could fruitfully build on the net-
work structure literature to better model the structures of matching markets
among agents embedded in the actual world, and explore the welfare impli-
cations and strategic incentives that arise from them.

5.3 Small cores in large markets

In apparent contrast to the present work, some empirical studies of match-
ing markets have found small cores in large markets. For example, Roth
and Peranson (1999) examined the National Resident Matching Program
(NRMP)’s market for medical residency positions from 1993 to 1996 and
found that in a market with roughly 20,000 applicants and potential po-
sitions, only about 0.1% of residents were assigned different matches by
primarily resident-proposing and program-proposing mechanisms.16 This is

16Neither the baseline NRMP mechanism nor the mechanism redesigned by Roth and
Peranson (1999) were simple deferred-acceptance mechanisms, so this comparison is not
completely within the theoretical framework of the present work. Nevertheless, the mech-
anisms in question were both based heavily on deferred-acceptance mechanisms, and did
differ in whether residents or programs proposed in the primary stage. Comparable results
obtained when the same authors investigated the fraction of hospitals with incentives to
manipulate the redesigned, applicant-proposing mechanism.
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a significant divergence from the roughly 4% that might be predicted by
some models presented in the present work.

These small cores are not due to structural variations in the NRMP
match—in the same work, the authors presented five years of data on a
matching market for thoracic surgery residents with roughly 175 applicants
(130 positions) and no match variations, in which < 0.5% of residents had
more than one stable match; some models of the present work might suggest
rates ten times that, given localized preferences. Similarly, Kojima et al.
(2013) examined a matching market for clinical psychologists (with roughly
3,000 applicants17 and 2,700 positions) from 1999 to 2007 and found that
roughly 0.2% of residents had more than one stable match. Pathak and
Sönmez (2008) examined two years of matching markets for primary- and
secondary-school admissions (with roughly 3, 000 applicants at each level
per year) in the Boston Public Schools and found five instances of applicants
with multiple stable matches.

These observations suggest that agents in these markets have prefer-
ences which are not well-modeled by locality alone. For example, Kojima
et al. (2013) found a concentration of program popularities in the clinical
psychology match, with a small number of programs receiving as many as
eight times the number of first-place rankings that would be predicted by
uniform draws. The authors further note that “these are preferences stated
after interviews have been conducted, so [they do] not preclude the possi-
bility that there are popular programs that receive many applications but
only interview a small subset of applicants”, and further that “an applicant
typically ranks a program only after she interviews at the program, and each
applicant receives and can travel to only a limited number of interviews.”

However, Kojima et al. (2013) did find locality structure in the clinical
psychology match—in their sample, half of single applicants rank programs
in at most two of eleven geographical regions. In addition to national ge-
ography, location of commuter-student schools within a city or applicants’
preferences for institutional features such as operational style or specialty
focus might induce locality among applicant preferences. It is intuitive that
such factors would exist in many of the settings encountered in this litera-
ture.

These structural features of agents’ preferences can have complex effects
on matching dynamics such as core size and cross-side welfare distribution,
in light of market size and cross-side imbalance. Full analysis of these in-

17The cited authors removed pairs of applicants registered as couples (roughly 19 per
year) for the cited experiment.

18



teractions are beyond the scope of the present work. It is similarly beyond
the scope of the present work to analyze the extent to which apparently
small cores in residency matches, or other markets of interest, are created
by successful strategic manipulations by residency programs (including ma-
nipulation of interviewing capacity)18.

5.4 Structure and core size

To briefly summarize the directional effects that structural factors can have
on match dynamics:

• Cross-side imbalance decreases core size and distributes welfare to fa-
vor the shorter side (Ashlagi et al. (2017)).

• Concentration of general popularity on one side of the market decreases
core size and attenuates the welfare effect of cross-side imbalance.

• Selectivity19 decreases core size (Immorlica and Mahdian (2005); Ko-
jima and Pathak (2009)) and attenuates the welfare effect of cross-side
imbalance (Ashlagi et al. (2017)).

• Preference locality increases core size (as per the present work).

• Larger markets amplify the welfare effect of cross-side imbalance (hold-
ing imbalance ratio constant), and decrease core size in the presence
of selectivity effects or cross-side imbalance (as presented in § 4 and
Appendix C).

18Mongell and Roth (1991) study a matching market for membership in undergraduate
social organizations and propose that empirically-observed but theoretically surprising
matching dynamics such as stability might be caused by the accepting side of the market
manipulating preference lists to obtain the stable match optimal for that side.

19The length of submitted rank-order lists may not be an accurate indication of selec-
tivity in settings where agents on either side face costs to search, or are actively engaging
in strategic manipulation strategies. In such cases, reported preferences may misleadingly
suggest a small core by falsely excluding matches that would be stable with respect to
true preferences, but do not appear among reported preferences.

Limitations on preference expression (whether exogenously imposed or endogenous from
search costs) can also create particularly misleading results in a setting like that in Shorrer
(2020), where both sides are (imperfectly) vertically differentiated and proposing agents
face uncertainty about their relative standing. In such a setting, students’ optimal appli-
cation portfolios include colleges with diversified quality levels, and ex post their apparent
stable matches will be largely determined by their own realized quality level. Other col-
leges of similar quality levels (which are, ex post, likely candidates for stable matches) are
disproportionately unlikely to appear in an optimally-diversified portfolio, falsely exclud-
ing most potential matches that are stable with respect to true preferences.
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Cross-side imbalance, concentration of popularity, and selectivity need
not be present globally to have their effects on the local core—and so may be
relevant on the local level in markets with sufficient locality in preferences.
Consider a model of preference structure under which medical residents agree
on intra-city ranking of hospitals, but have different preferences on which
city to work in. If the effective number of hospitals per city is large relative
to the effective number of cities, then this market will act similarly to a
market with common residents’ preferences, and will exhibit a small core
and an attenuated welfare effect of cross-side imbalance. Similarly, a highly-
segmented market with varying levels of cross-side imbalance will have a
small local core and strong cross-side welfare effect in a highly-unbalanced
segment, regardless of the global cross-side balance.

As locality in networks can be fractal in nature (Chakrabarti et al.
(2004); Leskovec et al. (2009)), the effects of these structural factors may be
mediated across scales of locality by the structure of agents’ preferences. I
hope that future work can explore how these effects propagate through the
network topologies induced by empirically-observed preference structures to
affect dynamics of distributional welfare and incentive-compatibility for all
participants.

5.5 Conclusion

This work presents an opportunity at the intersection of two increasingly
relevant topics—design of mechanisms for large matching markets and struc-
tural properties of large networks—to better understand the real-world set-
tings addressed by the market-design literature. By considering the matching-
market analogue of a simple model of network structure, I found welfare
and incentive dynamics not previously found in homogeneous market mod-
els. Unlike in homogeneous market models, these effects fail to vanish in
the large-market limit, and in simulation experiments, they are substantial
in magnitude.

As the stability and incentive-compatibility of matching-market mecha-
nisms is understood to be of primary importance to the success of matching
marketplaces, these results raise the potential for concern in markets not
known to have empirically small cores, but where preferences may plausibly
exhibit locality structure. For markets with empirically-observed very small
cores, these results suggest that the small core is not induced by market size
or imbalance alone, but due to other structural factors not yet investigated
in the literature.

I anticipate scope for future work that (a) uses tools from the network-
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structure literature to characterize the structures of preferences empirically
found in large markets and (b) applies the models and techniques techniques
from the prior literature and the present work directly to better-tailored
structural models of markets of interest.
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A Formal definitions excluded from main text

A.1 Matching markets

Given a set of colleges C and a set of students S (together agents), each
college c has a complete strict preference relation �c over the subsets of
students 2S and each student s has a complete strict preference relation
�s over colleges C and the outcome of being unmatched (denoted ∅). A
student s is acceptable to a college c if {s} �c ∅ and a college c is acceptable
to a student s if c �s ∅. A matching market is a tuple of colleges, students,
and agent preferences.

For a college c and a quota qc, the preference relation�c is responsive with
quota qc if the ranking of a student is independent of their colleagues, and
all sets of students exceeding quota qc are unacceptable (see Roth (1985)
for further discussion). I consider only responsive college preferences in
the present work.20 Furthermore, I abuse notation and write s �c ∅ and
s1 �c s2 to indicate {s} �c ∅ and {s1} �c {s2} when discussing colleges’
preferences with respect to individual students.

A matching is a mapping µ on C ∪ S that associates colleges to disjoint
sets of students, and students to the corresponding college or unmatched
outcome:

• For c ∈ C, µ(c) ∈ 2S .

• For s ∈ S, µ(s) ∈ C ∪∅.

• For c, s ∈ C × S, s ∈ µ(c)⇐⇒ µ(s) = c.

A matching µ is blocked by a college-student pair c, s if:

• s prefers c to their match (c �s µ(s)).

• Either c has a vacancy and finds s acceptable (|µ(c)| < qc and s �c ∅),
or c prefers s to some other matched student (∃s′ ∈ µ(c) : s �c s′).

A matching is stable if it is unblocked, each college c is matched to a number
of acceptable students no more than qc, and each matched student is matched
to an acceptable college.

20Kojima and Pathak (2009) note that every responsive preference relation corresponds
to an additive utility function over students, providing an intuitive justification for this
restriction.
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B Proofs excluded from main text

B.1 Core size in large, unbalanced markets

Consider a sequence of random markets
(
Γ̃(n)

)
n∈N. For a random market

Γ̃(n), let α(n) denote the expected number of colleges with multiple sta-
ble allocations and let β(n) denote the expected number of students with
multiple stable allocations.

Theorem B.1. Given a (k, q)-regular sequence of (p, r)-unbalanced, k-nearest-
colleges random markets, there exists ∆ > 0 such that:

• lim inf
n→∞

α(n)/n > ∆.

• lim inf
n→∞

β(n)/n > ∆.

Proof. Consider two colleges c1, c2 ∈ C(n) and students s1, . . . , sq+1 ∈ S(n),
where q := qc1 . Let the event E(n)(s1, . . . , sq+1, c1, c2) denote the case where:

1. College c1 ranks s2 last of s1, . . . , sq+1. Formally, for all s ∈ {s1, s3, . . . , sq+1},
s �c1 s2 �c1 ∅.

2. College c2 ranks s2 higher than s1. Formally, s2 �c2 s1 �c2 ∅.

3. The only students who find either c1 or c2 acceptable are s1, . . . , sq+1.
Formally, for all s ∈ S(n)\{s1, . . . , sq+1}, ∅ �s c1 and ∅ �s c2.

4. The colleges that s1 finds most desirable are c2 and c1, in that order.
Formally, for all c ∈ C(n)\{c1, c2}, c2 �s1 c1 �s1 c.

5. The colleges that s2 finds most desirable are c1 and c2, in that order.
Formally, for all c ∈ C(n)\{c1, c2}, c1 �s2 c2 �s2 c.

6. The college that s3, . . . , sq+1 find most desirable is c1. Formally, for
all s ∈ {s3, . . . , sq+1} and c ∈ C(n)\{c1}, c1 �s c.

Note that, in the event E(n)(s1, . . . , sq+1, c1, c2), the agents have two stable
allocations: {(s1, c2), (s2, c1), (s3, c1), . . . , (sq+1, c1)} (the student-optimal al-
location), and {(s1, c1), (s2, c2), (s3, c1), . . . , (sq+1, c1)} (the college-optimal
allocation).

The first statement (lim inf
n→∞

α(n)/n > ∆) follows from Lemma B.2 be-

low, which places a positive lower bound21 on the probability that a college

21specifically, ∆ = min(1,p)(q+1) exp[−pq(k+1)]

4k2q!
, or more strongly ∆ = p·exp[−pq(k+1)]

4k2 when

lim inf
n→∞

∣∣∣S(n)
∣∣∣/n > 1, as demonstrated in Lemma B.3
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c1 is involved in some such E(n)(s1, . . . , sq+1, c1, c2), and which holds for
sufficiently large n.

The second statement (lim inf
n→∞

β(n)/n > ∆) then follows by a counting

argument: each pair of colleges c1, c2 where an event E(n) occurs corresponds
to exactly one pair of students s1, s2 with multiple stable allocations.

Lemma B.2. Fix an arbitrary ε > 0. There exists sufficiently large n such
that for each college c1 ∈ C(n) the event

E(n)
c1

:=
⋃

(s1,...,sq+1,c2)∈(S(n))×(q+1)×C(n)

E(n)(s1, . . . , sq+1, c1, c2) (B.1)

has probability bounded below by ∆ := min(1,p)(q+1) exp[−pq(k+1)]
4k2q!

.

Proof. Fix an arbitrary c1 ∈ C(n). For different selections of (s1, {s2, . . . , sq+1}, c2),
the events E(n)(s1, . . . , sq+1, c1, c2) are disjoint. There are

∣∣S(n)
∣∣·((|S(n)|−1)Cq

)
possible selections of distinct (s1, {s2, . . . , sq+1}) and yc2−yc1 = 1. Let s2 be
the c1-dispreferred student among {s2, . . . , sq+1} without loss of generality.
The probability of each possible E(n)(s1, . . . , sq+1, c1, c2) is at least

1

2
· 1

2
·
(

1− k + 1

n− 1

)
(|S(n)|−q−1) · 1

nk
· 1

nk
·
(

1

n

)
(q−1), (B.2)

where each term in this expression corresponds to an (independent)22 re-
quirement from the definition of E(n)(s1, . . . , sq+1, c1, c2). Thus, the proba-

bility of the event E
(n)
c1 is at least

∆(n)
q :=

∣∣∣S(n)
∣∣∣ ·( q∏

i=1

∣∣S(n)
∣∣− 1− i
i

)
·

(
1− k+1

n−1

)
(|S(n)|−q−1)

4 · nk · nk · n(q−1)
. (B.3)

Let Q := lim sup
n→∞

∣∣∣S(n)
∣∣∣/n and Q := lim inf

n→∞

∣∣∣S(n)
∣∣∣/n; then

lim inf
n→∞

∆(n)
q ≥

Q(q+1) · exp
[
−Q(k + 1)

]
4k2q!

. (B.4)

22To be precise, the first, second, third, fourth, fifth, and sixth requirements, respec-
tively, where the first requirement requires only s1 �c1 s2, given that s2 is the c1-
dispreferred student among {s2, . . . , sq+1}.
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So, noting Q ≤ pq and Q ≥ p, conclude

P
[
E(n)
c1

]
≥ ∆ :=

min(1, p)(q+1) exp[−pq(k + 1)]

4k2q!
(B.5)

for sufficiently large n.

Lemma B.3. Fix an arbitrary ε > 0. If Q > 1, then there exists sufficiently

large n such that for each college c1 ∈ C(n) the event E
(n)
c1 has probability

bounded below by ∆ := p·exp[−pq(k+1)]
4k2

.

Proof. If Q > 1, then
∣∣S(n)

∣∣ > n + q + 1 for sufficiently large n. Then(
(|S|−1)Cq

)
> nq, so

lim inf
n→∞

∆(n)
q ≥

Q · exp
[
−Q(k + 1)

]
4k2

(B.6)

and

P
[
E(n)
c1

]
≥ ∆ :=

p · exp[−pq(k + 1)]

4k2
(B.7)

for sufficiently large n.

C Figures excluded from main text

This appendix presents figures that extend § 4, reporting average core size
and welfare gap size observed in market simulations for various market spec-
ifications. Plots are labeled with number of realizations observed (denoted
t).

Figures 5 and 6 extend Figures 1–3 and report on one-to-one k-nearest-
colleges markets of size |C| ∈ {40, 400, 1000, 4000}. Core sizes and welfare
gaps remain substantial in unbalanced markets for small k, even as |C|
becomes large.

Figures 7–9 report on many-to-one k-nearest-colleges markets of q ∈
{1, 4, 10} and |C| ∈ {400, 1000, 4000}. While matched students’ average
welfare gaps shrink with increased q, gaps remain apparent to visual in-
spection and the fraction of colleges with incentive to manipulate remains
substantial for small k.

Figure 10 extends Figure 4 and compare k-nearest-colleges markets of
|C| ∈ {40, 400, 1000} to markets with similarly-selective but homogeneous
students. As in the |C| = 40 case discussed in § 4.3, the sharp welfare
advantage of the short side of the market is attenuated and smoothed by
selectivity in both models, though incentives to manipulate are supported
only in the k-nearest-colleges model.
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C.1 Strategic incentives in unbalanced markets

Figure 5: Core size, matched students’/colleges’ quantile rank of matches
for |C| = 40 and |C| = 400 under k-nearest-colleges preferences. Plots at
top reproduce Figures 1, 2, and 3.
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Figure 6: Core size, matched students’/colleges’ quantile rank of matches
for |C| = 1000 and |C| = 4000 under k-nearest-colleges preferences.
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C.2 Core size and allocation outcomes in large markets

Figure 7: Core size and matched students’ quantile rank of matches for
q ∈ {1, 4, 10} and q|C| = 400 under k-nearest-colleges preferences. Plots at
top reproduce Figure 3.
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Figure 8: Core size and matched students’ quantile rank of matches for
q ∈ {1, 4, 10} and q|C| = 1000 under k-nearest-colleges preferences. Plots at
top reproduce parts of Figure 6.
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Figure 9: Core size and matched students’ quantile rank of matches for
q ∈ {1, 4, 10} and q|C| = 4000 under k-nearest-colleges preferences. Plots at
top reproduce parts of Figure 6.
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C.3 Localized versus incomplete homogeneous preferences

Figure 10: Matched students’ quantile rank of matches under k-nearest-
colleges preferences (left) and similarly-selective homogeneous preferences
(right). Plots at left reproduce parts of Figures 1, 3, and 6.
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D A generalized locality property

The proof of Theorem 3.1 above demonstrates the existence of non-vanishing
market power in any large market model in which a variant of Lemma 3.2
obtains, namely where lim

n→∞
E(n)
c1 > 0. In this appendix, I characterize a

spectral condition on preference structure, with a natural interpretation as
a measure of locality, that is sufficient to demonstrate that a similar bound
obtains. In § D.2 below, I demonstrate that many random market mod-
els analogous to models common in the network-structure literature satisfy
the network-structural analogue of this condition, and therefore analogous
preference structures generate markets which exhibit non-vanishing market
power.

D.1 Uniform students

Let Γ̃(n) =
(
C(n), S(n),P(n)

C ,P(n)
S

)
be a random market with n =

∣∣C(n)
∣∣ and

P(n)
C the uniform distribution over permutations of S(n). Fix some c1 and

c2 ∈ C(n), and draw a s1 and s2 with preferences from P(n)
S . Without loss

of generality, let s1 �c1 s2. Consider then the following events:

• E(n)
[c1;c2]

:= s2 �c2 s1

• E(n)
[c1;∀s]

:= ∀s ∈ S(n)\{s1, s2}, (∅ �s c1) ∧ (∅ �s c2)

• E(n)
[c1;s1]

:= (rs1(c2) = 1) ∧ (rs1(c1) = 2)

• E(n)
[c1;s2]

:= (rs2(c1) = 1) ∧ (rs2(c2) = 2)

• E(n)(s1, s2, c1, c2) = E
(n)
[c1;c2]

∧ E(n)
[c1;∀s] ∧ E

n
[c1;s1]

∧ E(n)
[c1;s2]

• E(n)
c1

:=
⋃

(s1,s2,c2)∈S(n)×S(n)×C(n)

E(n)(s1, s2, c1, c2) .

Since P(n)
C is uniform over permutations of students, P

[
E

(n)
[c1;c2]

]
= 1

2 . And

since students’ preferences are drawn independently, consider the remaining

events as independent probabilities on draws of a student s from P(n)
S :

• P
[
E

(n)
[c1;∀s]

]
=
(
Ps[∅ �s c1] · Ps[∅ �s c2 | ∅ �s c1]

)(|S(n)|−2)

• P
[
E

(n)
[c1;s1]

]
= Ps[rs(c2) = 1] · Ps[rs(c1) = 2 | rs(c2) = 1]
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• P
[
E

(n)
[c1;s2]

]
= Ps[rs(c1) = 1] · Ps[rs(c2) = 2 | rs(c1) = 1] .

So, noting that for different selections of (s1, s2, c2) the events E(n)(s1, s2, c1, c2)

are disjoint and that there are n(n−1)
2 draws of (s1, s2) such that s1 6= s2 and

s1 �c1 s2, see:

P [E(n)
c1 ] =

n(n− 1)

4

∑
c2∈C(n)\{c2}

P
[
E

(n)
[c1;∀s]

]
· P
[
E

(n)
[c1;s1]

]
· P
[
E

(n)
[c1;s2]

]
=
n(n− 1)

4
· Ps[rs(c1) = 1] · Ps[∅ �s c1](|S

(n)|−2)

·
∑

c2∈C(n)\{c1}

(
Ps[rs(c2) = 1]

· Ps[∅ �s c2 | ∅ �s c1](|S
(n)|−2)

· Ps[rs(c1) = 2 | rs(c2) = 1]

· Ps[rs(c2) = 2 | rs(c1) = 1]

)
. (D.1)

We can use this expression to derive from preference structure a bound
on the expected number of colleges (and students) with more than one stable
match.

D.1.1 Uniform students, ex ante equipopular colleges

Say that colleges are ex ante equipopular23 if

∀i ∈ {0, . . . , k}, ∀c ∈ C,Ps[rs(c) = i] =
1

|C|
, (D.2)

i. e., if each college is equally likely to appear in each position in a student’s
preference list.

Let
(
Γ̃(n)

)
n∈N be a (k, q)-regular sequence of random markets with col-

leges ex ante equipopular and P(n)
C the uniform distribution over permu-

tations of S(n). Consider Γ̃(n) =
(
C(n), S(n),P(n)

C ,P(n)
S

)
. Then note that

23Note that ex ante equipopularity allows for correlations within a students’ rankings
of different colleges, and is a weaker condition than ex ante symmetry (as it allows for
asymmetries in correlation structure).
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Ps[∅ �s c2 | ∅ �s c1] ≥ n−2k
n and so:

P [E(n)
c1 ] ≥n(n− 1)

4
· 1

n
·
(

1− k

n

)
(qn−2)

·
∑

c2∈C(n)

(
1

n
·
(

1− 2k

n

)
(qn−2)

· Ps[rs(c1) = 2 | rs(c2) = 1]

· Ps[rs(c2) = 2 | rs(c1) = 1]

)
, (D.3)

which in the n→∞ limit is:

lim
n→∞

P [E(n)
c1 ] ≥ exp[−3qk]

4
·
∑

c2∈C(n)

(
Ps[rs(c1) = 2 | rs(c2) = 1]

· Ps[rs(c2) = 2 | rs(c1) = 1]

)
. (D.4)

Define the stochastic operator A(n) :=
[
Ps[rs(ci) = 2 | rs(cj) = 1]

]
ij

.
Then note:((

A(n)
)T (

A(n)
))

c1c1 =
∑

c2∈C(n)

(
Ps[rs(c1) = 2 | rs(c2) = 1]

· Ps[rs(c2) = 2 | rs(c1) = 1]

)
(D.5)

and

lim
n→∞

E
[
c ∈ C(n) : E(n)

c

]
≥ exp[−3qk]

4
lim
n→∞

Tr
((
A(n)

)T (
A(n)

))
. (D.6)

That is, we can express a sufficient condition that a market exhibits non-
vanishing market power (under the above regularity and uniformity assump-
tions) as a purely spectral condition on the matrix of first- and second-choice
colleges by students.

As an example, we can demonstrate non-vanishing market power in the
setup of Theorem 3.124 by noting ex ante equipopularity, regularity, uni-
formity of colleges’ preferences, and that Tr

((
A(n)

)
T
(
A(n)

))
= n

k , implying
that the expected fraction of colleges with more than one stable match is
non-vanishing.

24albeit with a weaker bound in terms of k and q
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D.2 Locality in network structure

Modeling locality in inter-agent networks was an early motivation for ran-
dom graph models that generalized uniform (Gilbert (1959); Erdős and
Rényi (1960)) and homogeneous power-law (Barabási and Albert (1999); Al-
bert and Barabási (2000)) network models. For the results in the main text, I
considered an analogue of a synthetic locality model presented by Watts and
Strogatz (1992), which mixed an Erdős–Rényi uniform graph model with a
regular ring lattice. In the network structure literature, locality was also in-
troduced to generative models via variation to their sequential-attachment
mechanisms (Kleinberg et al. (1999); Kumar et al. (2000); Leskovec et al.
(2005)). Further work has refined the modeling of locality structure in both
synthetic (Leskovec et al. (2010)) and ad-hoc (Yang and Leskovec (2014))
network models.

The locality condition established above is a form of subgraph density
condition on the ordered, directed graph of agent preferences, similar to
the triangle-counting interpretation of network locality in undirected graphs
(Wasserman and Faust (1994)). As such, a number of proposed models
from the network-structure literature have preference-structure analogues
that exhibit non-vanishing locality, in the above sense:

• ring-lattice mixture models (Watts and Strogatz (1992)), as introduced
in the main text,

• geography-based models (Jin et al. (2000)),

• copying-based (Kleinberg et al. (1999); Kumar et al. (2000)) and prototype-
copying-based (Leskovec et al. (2005)) preferential attachment models,

• Kronecker-product models (Chakrabarti et al. (2004); Leskovec et al.
(2010)),

• community-attribute models (Yang and Leskovec (2014)).

I anticipate scope for future work to investigate the applicability of net-
work models to modeling preference structure in matching markets—and
the matching-market dynamics that they imply.

E A tighter bound on multiple-stable-allocations
event probability

Consider a regular sequence of balanced, one-to-one, k-nearest-colleges ran-
dom markets.

38



Lemma E.1. Fix an arbitrary ε > 0. There exists sufficiently large n such
that for each college c1 ∈ C(n) the event

E(n)
c1

:=
⋃

(s1,s2,c2)∈S(n)×S(n)×C(n)

E(n)(s1, s2, c1, c2) (E.1)

has probability bounded below by exp[−k−1]
4k2

· γ(k−γ)
2

(k−1)2 −ε, where γ := e
e−1 ≈ 1.58.

Proof. Fix an arbitrary c1 ∈ C(n). For different selections of (s1, s2, c2), the
events E(n)(s1, s2, c1, c2) are disjoint. There are n · (n− 1) · (k − 1) possible
selections of (s1, s2, c2) such that s1 6= s2 and 1 ≤ yc2 − yc1 < k. Half of
these events have zero probability (when s2 �c1 s1). Letting ` := yc2 − yc1 ,
the probability of each of the other events is at least

1

2
·
(

1− k + `

n− 1

)
(n−2) · k − `

nk(k − 1)
· k − `
nk(k − 1)

, (E.2)

where each term in this expression corresponds to an (independent)25 re-
quirement from the definition of E(n)(s1, s2, c1, c2). Thus, the probability of

the event E
(n)
c1 is at least

n · (n− 1) ·
k−1∑
`=1

(
1

2
· 1

2
·
(

1− k + `

n− 1

)
(n−2) · k − `

nk(k − 1)
· k − `
nk(k − 1)

)
, (E.3)

and the limit inferior of this expression as n→∞ is, letting γ := e
e−1 ≈ 1.58,

exp[−k]

4k2(k − 1)2

(
k−1∑
`=1

exp[−`]k2 − 2

k−1∑
`=1

exp[−`]k`+

k−1∑
`=1

exp[−`]`2
)
. (E.4)

With the following explicit forms for the summations:

k−1∑
`=1

exp[−`]k2 = exp[−1]k2γ − exp[−k]k2γ (E.5)

25To be precise, the second, third, fourth, and fifth requirements, respectively.

39



k−1∑
`=1

exp[−`]k`

= k
k−1∑
i=1

k−1∑
`=i

exp[−`]

= k
k−1∑
i=1

(exp[−i]− exp[−k])γ

= kγ

(
− exp[−k](k − 1) +

k−1∑
i=1

exp[−i]

)
= kγ(− exp[−k](k − 1) + (exp[−1]− exp[−k])γ)

= exp[−1]kγ2 − exp[−k]
(
k(k − 1)γ + kγ2

)
(E.6)

k−1∑
`=1

exp[−`]`2

=
k−1∑
i=1

k−1∑
j=i

k−1∑
`=j

exp[−`]

=
k−1∑
i=1

k−1∑
j=i

(exp[−j]− exp[−k])γ

= γ

− exp[−k]
k(k − 1)

2
+

k−1∑
i=1

k−1∑
j=i

exp[−j]


= γ

(
− exp[−k]

k(k − 1)

2
+
k−1∑
i=1

(exp[−i]γ − exp[−k]γ)

)

= γ

(
− exp[−k]

k(k − 1)

2
− exp[−k]γ(k − 1) + γ

k−1∑
i=1

exp[−i]

)

= γ

(
− exp[−k]

k(k − 1)

2
− exp[−k]γ(k − 1) + exp[−1]γ2 − exp[−k]γ2

)
= exp[−1]γ3 − exp[−k]

(
k(k − 1)

2
γ + (k − 1)γ2 + γ3

)
,

(E.7)
we recover an explicit form for the limit:

40



lim
n→∞

[
n · (n− 1) ·

k−1∑
`=1

(
1

2
· 1

2
·
(

1− k + `

n− 1

)
2n · k − `

nk(k − 1)
· k − `
nk(k − 1)

)]

=
exp[−k]

4k2(k − 1)2

(
k−1∑
`=1

exp[−`]k2 − 2

k−1∑
`=1

exp[−`]k`+

k−1∑
`=1

exp[−`]`2
)

=
exp[−k]

4k2(k − 1)2

(
exp[−1]

(
k2γ − 2kγ2 + γ3

)
+ exp[−k]

((
k2 − 3k

2

)
γ + (k + 1)γ2 − γ3

))
>

exp[−k]

4k2(k − 1)2
· exp[−1]

(
k2γ − 2kγ2 + γ3

)
=

exp[−k − 1](k − γ)2γ

4k2(k − 1)2
.

(E.8)

For k ≥ 3, this is greater than the bound of exp[−k−1]
4k2

derived in lemma
3.2 by considering only interactions between adjacent colleges. In the k →∞
limit, the tighter bound is tighter by a factor of γ ≈ 1.58.
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