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Abstract

I present a class of models for random matching markets with non-
homogeneous agent preferences, drawn from the computer science liter-
ature on network structure. An analogue of the Watts—Strogatz (1998)
‘small-world’ network model supports significant incentives to manip-
ulate matching outcomes. The scope for manipulation remains sub-
stantial as markets become large and unbalanced—contrasting prior
work which found little scope under uniform or homogeneous random
preferences. This scope for manipulation directly corresponds to core
size and differences in agents’ welfare between core outcomes. These
results suggest largeness and cross-side imbalance may be insufficient
to fully explain small cores in matching markets; I discuss alternative
explanations.
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1 Introduction

I consider matching markets where both sides have preferences over potential
matches, and no contract details allow for transfer of utility. Examples of
importance and interest include allocation of students to schools at primary
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through graduate levels, allocation of migrants to settlement destinations,
matching of participants in bipartite dating pools, construction of exclusive
social organizations, and some settings of assignment of entry-level workers
to employer firms.

As matching markets are used to coordinate and allocate the labor, train-
ing, and education of hundreds of thousands of participants each year—
typically in multi-year commitments—their efficiency can be of substantial
economic importance. Correspondingly, the outcomes of matching can be
of such importance to participants that markets provide significant incen-
tives for strategic manipulation by sophisticated participants (Pathak and
Sonmez (2008)). Thus, matching-market designers are directly concerned
with the choices and incentives that mechanisms offer to market participants,
and their effects on allocation outcomes in equilibrium (Roth| (2002)).

Previous theoretical studies of matching markets have suggested that
agents’ abilities and incentives to manipulate markets generally vanish as the
size of a random market grows (Roth and Peranson| (1999); Immorlica and
Mahdian (2005)[[). I find, however, that these theoretical results depend
crucially on the agent preferences lacking locality structure; in matching
markets with localized preference structures, agents’ incentives to manipu-
late can instead robustly fail to vanish. These findings—that the received
wisdom that cores robustly vanish in large markets depends on assumptions
about agent preference structure—further contextualize results presented by
Hassidim et al. (2018) and Bir6 et al. (2022) who demonstrate non-vanishing
cores in a random model of matching with contracts.

The results presented in the present work suggest that, in large markets
where agents’ preferences will plausibly exhibit nontrivial locality, empirical
observations of small cores may not be adequately explained by market size
alone. They are also not adequately explained by competition effects, as
the non-vanishing cores are robust to imbalance between the sides of the
market—an outcome not observed in models of markets without preference
localityﬂ While some forms of correlation between agents’ preferences pro-

! As this paper was in revision, Immorlica, Mahdian, and the authors of |Ashlagi, Kano-
ria, and Leshno| (2013) were recognized by the ACM Special Interest Group on Economics
and Compution with the 2023 “Test of Time” award for their respective papers. I con-
gratulate the recipients on this well-deserved award. The award citation “for explaining
an apparent gap between the theory and practice of matching markets and helping us
understand why small cores are so common” highlights enduring interest in the effects
which cause cores to be large or small in matching markets, in which spirit the present
work is presented.

2A possible interpretation of this interaction is that in order for a small amount of
competition to cause a global lack of market power, a large number of agents across the



vide alternate explanations for empirically small cores, the present work
suggests that further study of the interaction of size, competition, and pref-
erence structure in markets of interest is needed to produce a full explanation
of these observations and an understanding of potential settings where small
cores may not be guaranteed.

1.1 Motivation and background

The literature on matching-market mechanism design has shown that ex post
stability of outcomes, and ex ante incentive-compatibility of mechanisms, are
of primary importance to the success of an allocation marketplace (Roth
(1984, 2002))). Intuitively speaking, ex post stability is the condition that
it is an equilibrium for agents to follow the assigned allocation, rather than
seeking a match outside it or electing to later recontract. |Gale and Shapley
(1962) have shown that, in one—to—oneﬂ matching markets, stable allocations
exist in general and are efficiently computable. In fact, stable-allocation-
finding mechanisms are now used in a variety of settings where ‘unraveling’
deviation from mechanism assignments would otherwise pose significant wel-
fare costs to the market (Roth! (1984)); Roth and Xing (1994)); Niederle and
Roth (2003)); Fréchette et al.| (2007)).

However, stability does not necessarily determine a unique allocation
(Knuth (1976))). Multiple stable allocations may exist, and individual agents
may have sufficient market power to influence which equilibrium obtains.
More explicitly, a nontrivial core (which, in this setting, coincides with the
set of ex post stable allocations) excludes the possibility of a core-selecting
mechanism for which truth-telling is a dominant strategy for all partici-
pants. An agent who selects a desirable allocation from the true core—and
(mis)represents that only that allocation’s outcome is acceptable to them—
will be granted that outcome by a core-selecting mechanism (Gale and So-
tomayor| (1985)). Thus, agents deviating from truth-telling can manipulate
a core-selecting mechanism into assigning them their most-favored outcome
among those achieved in the core.

Therefore, ex ante incentive—compatibilityﬁ of a core-selecting mechanism

market need to be essentially substitutes for one another. Analogous effects are well-
known in price theory. However, the present work suggests that localized preferences can
cause agents to be effectively differentiated and retain local market power. I thank an
anonymous referee for the suggestion of this interpretation.

3In many-to-one and many-to-many settings, existence of stable allocations generally
requires either full substitutability (Roth and Sotomayor| (1990)) or full complementarity
(Rostek and Yoder| (2020])).

*1. e., compatibility of a truth-telling strategy with agents’ own incentives.



can only be assured for agents who are assigned their most-favored core
outcome when truth-telling. Roth (1982) demonstrates that this can, at
best, be simultaneously assured for all agents on one side of the market
(unless only one core allocation exists).

It follows that the available incentives for strategic manipulation are
closely linked to the gap in welfare (of the mechanism-disfavored side) be-
tween the subjectively optimal and pessimal core outcomesﬁ Strategic ma-
nipulation degrades welfare by risking allocative inefficiency (and creating
its own wasteful investment race) and threatens primary objectives of mech-
anism design. Agents’ welfare gaps among core allocations are therefore of
direct concern to the matching-market designer.

Prior work has investigated intra-core welfare gaps by bounding core
size. Roth and Peranson (1999)) observed qualitatively small cores in the
National Resident Matching Program and they conjectured, from simulation
results, that fixed-size preference lists drawn uniformly at random yielded
vanishingly small cores as markets became large. [mmorlica and Mahdian
(2005) proved this conjecture. Kojima and Pathak (2009) and |Ashlagi et al.
(2017)) demonstrated comparable results for many-to-one markets with short
preference lists (whether balanced or unbalanced) and unbalanced one-to-
one markets with long preference lists, respectively.

This literature has thus presented several classes of random market mod-
els under which core size and welfare gap size vanish as the number of agents
in the market becomes large. However, these models have nearly all been
homogeneous—that is, each agent will form each preference with probability
functionally independent of the other preferences they form.

The present work constrasts these results by presenting a class of ran-
dom market models made non-homogenous by a locality structure in agent
preferences. These models are inspired by analogy to a class of models for
inter-agent networks drawn from the computer science literature on network
structure, which were originally presented to model empirical observations
about network formationﬁ In these models with locality, agents have latent
features that place them at a point in feature space, and some agents prefer
to match to agents ‘nearby’ in space. This structure can reflect not just
geographic structure in agents’ preferences, but also structure in preferences

SFurthermore, the presence of manipulation by the mechanism-disfavored side of the
market creates game-theoretic incentives for the mechanism-favored side of the market
to manipulate in order to discourage the other side’s manipulation. |Gale and Sotomayor
(1985) analyze the strategic equilibrium of this game in the perfect-information setting.

°T further discuss the relevant network-structure literature in § below; for another
treatment, see Chapter 2 of Rheingans-Yoo (2016).



based on categorical or stylistic features of potential matchesm

In the present work, I demonstrate that, under random market models
where agents’ preferences exhibit sufficient locality, optimal—pessimal welfare
gaps remain substantial as markets become large, as does the fraction of
agents facing such gaps.

1.2 Overview of results

My model of college admissions markets can be understood as extending the
Kojima and Pathak| (2009) model of large matching markets. Their model is
characterized by (a) a large number of colleges, of which each student finds
only a small number acceptable, and (b) random, conditionally independent
agent preferences. I weaken the latter condition and allow a student’s opin-
ion of one college to correlate with their opinion of colleges nearby in latent
feature space. I maintain ex ante symmetry between schools, and between
students, for my main results. When student preferences exhibit this form
of locality, I find that the core is non-vanishing as the market becomes large.

I additionally investigate the effect of cross-side imbalance on markets
with locality. |Ashlagi et al.| (2017) find that when agents have long pref-
erence lists, balanced markets exhibit non-vanishing cores but introducing
a small cross-side imbalance causes core size to vanish. However, I find no
such effect in random markets with my model of preference locality.

I augment these theoretical results with simulation results that demon-
strate that core size and manipulation incentives are substantial in magni-
tude in practice. These simulations demonstrate the persistence of a large
core in large markets and under cross-side imbalance, and show that the oth-
erwise sharp welfare advantage afforded to the short side of a homogeneous
market (Kanoria et al|(2021)) can be attenuated by preference locality. Fi-
nally, I discuss plausible alternative explanations for empirical observations
of small cores in some large matching markets with preference locality.

1.3 Related work on non-homogeneous markets

The two examples of robustlyﬂ non-vanishing market power in the literature
are are in replica markets and the |Biré et al.| (2022) setting of college admis-
sions with financial aid contracts. Other non-homogeneous random market

"For discussion of empirical observations of locality structure in the National Resident
Matching Program, see § below.

8Ashlagi et al.| (2017) show that non-vanishing core size and market power is only
supported by long preference lists in the knife-edge case of cross-side balance.



models presented for study have not exhibited large cores, though they have
either not included locality, or have combined locality with other structural
properties that are understood to cause core convergence.

1.3.1 Random replica markets

A random replica market is the union of of k mutually disconnected random
submarkets. In this form, a large replica market can have a large total
number of agents n, but with each agent only interacting with a submarket of
a small fixed size n/k. It is commonly understood that large replica markets
need not exhibit vanishing core size if k& grows as O(n) and submarket size
remains O(1).

For example, Immorlica and Mahdian| (2015)), in their Remark 2.7, con-
sider a random replica market of non-interacting 2-college submarkets to
which students are assigned at random. In this model they find that the
fraction of agents with more than one stable match fails to vanish as the
market grows large in the number of submarkets and with proportionally
many students. This observation, however, fails to illuminate matching be-
haviors within the giant connected component of a matching market, which
virtually always dominates real-world markets of interest.

By contrast, the Watts—Strogatz model of the present work’s main results
allows random markets to be fully connected, with average agent-to-agent
distance of order O(log(n)), and demonstrates that non-vanishing market
power is possible in such settings. It is not commonly known that markets
this thoroughly connected can exhibit large cores.

1.3.2 Large cores in matching with contracts and the role of pref-
erence heterogeneity

Bir6 et al.|(2022) present a setting of matching with contracts where market
power does not vanish in the large-market limit. The proofs presented in
the present work use techniques for constructively demonstrating market
power in the large-market limit similar to theirs, but adapted to the setting
of matching without contracts and random market models with locality in
preference structure.

One difference required by the setting of matching without contracts,
however, is the need to impose heterogeneity in preferences on both sides
of the market. It is well-known that when one or both sides of a matching
market have preferences that align with a single common ranking, only one



stable matching existsﬂ This is no obstacle to small-cores results in the
literature on matching without contracts, but means that results demon-
strating the potential for large cores will necessarily be restricted to settings
where both sides’ preferences exhibit at least some heterogeneity. For my
main result, I assign colleges uniform random preferences to achieve this
condition.

Biré et al| (2022) are able to avoid this heterogeneity requirement for
their results because their setting is matching with contracts, where multi-
ple stable matchings can be supported within a single student—college pair.
Indeed, their Proposition 5 indicates that when students’ preferences over
matches both align and dominate their preferences over contract terms, the
only multiplicities in the set of stable allocations come from varying contract
terms between matched partners.

1.3.3 Other work on non-homogeneous markets

Kojima and Pathak| (2009) consider the union of a bounded number of ho-
mogeneous models, to represent agent types. However, with a bounded
number of agent types, this model exhibits vanishing locality, as discussed
in Appendix [C]

Ashlagi et al.| (2017) consider a multiparameter model of correlated pref-
erence structure, including a parameter for locality, in their setting with long
preference lists. However, their locality parameter simultaneously induces
alignment between sides of the market, shrinking the possible difference
between the student-optimal and college-optimal stable matches. Unsur-
prisingly, they find that increasing this parameter does little to increase the
size of the core (though it does cause a slight increase under sufficiently
unbalanced market specifications). By contrast, I present a model of pref-
erence locality without cross-side preference alignment, and find large cores
supported under certain market specifications.

1.4 Related work on network structure

The approach to modeling preference structure presented in the present work
draws from the computer science literature on network structure in large

% Any stable matching must coincide with the unique matching produced by serial dic-
tatorship by the commonly-ranked agents, in order of their rank (SDrank). Any matching
1 which does not coincide is blocked by the pair consisting of z*, the top-ranked agent on
the commonly-ranked side not receiving their SD;ank match (who thus receives a match
they rank lower); and z*’s SDyank match, who receives a match in p that they rank lower
than z*.



graphs. Early analysis of large homogeneous graphs (Gilbert| (1959); |[Erdos
and Rényi (1960))) was conducted via combinatorial techniques similar to
the existing literature on large matching markets. However, the contempo-
rary network-structure literature has turned to non-homogeneous models to
model structural features empirically observed in real-world graphs—e. g.,
locality over latent features (Watts and Strogatz (1998); Leskovec et al.
(2009)); the small-world property (Leskovec et al. (2005); Bordino et al.
(2008))); power-law distribution of node degree (Barabasi and Albert| (1999));
Aiello et al.| (2000)); self-similar subnetwork structure (Chakrabarti et al.
(2004))); and others (Boldi et al|(2011); Yang and Leskovec (2014))).

The specific preference-locality structure I introduce is inspired in form
by one-dimensional locality models for network graphs (Watts and Strogatz
(1998)). While I do not consider the analogues of more-sophisticated gener-
ative network models in this work, those models do suggest that locality can
exist under a wide and general variety of random market models, and in a
form that supports market power in the large-market limit. In Appendix [C]
I present a generalized locality property sufficient to yield my main results
and suggest common generative network models from the network-structure
literature under which the analogous property obtains.

Market agents forming preferences over potential matches are plausibly
influenced by similar processes as agents forming ties in a network graph.
On this basis, I propose that work on the theory of matching should be able
to fruitfully build on the network-structure literature to better model the
structures of matching markets among agents embedded in the actual world,
and explore the welfare implications and strategic incentives that arise from
them.

2 Model

I extend the random matching market model of Kojima and Pathak| (2009))
to support non-homogeneous structure among students’ preferences. This
model captures “correlated preferences” models of the kind discussed and
simulated in |Ashlagi et al. (2017)), allowing for direct comparison of homo-
geneous and non-homogeneous preference structures.

2.1 Matching markets

I consider one-to-one and many-to-one matching markets, with colleges de-
manding ¢ > 1 matches and students demanding precisely one match.



Given a set of colleges C' and a set of students S (together agents), each
college ¢ has a complete strict preference relation . over the subsets of
students 2° and each student s has a complete strict preference relation >
over the colleges C' and the outcome of being unmatched (denoted @). A
student s is acceptable to a college c if {s} . @ and a college ¢ is acceptable
to a student s if ¢ -5 &. A matching market is a tuple of colleges, students,
and agent preferences.

For a college c and a quota q., the preference relation >, is responsive with
quota q. if the ranking of a student is independent of their colleagues, and
all sets of students exceeding quota ¢. are unacceptable (see Roth| (1985)
for further discussion). I consider only responsive college preferences in
the present workm Furthermore, I abuse notation and write s >, @ and
S1 = S to indicate {s} =, @ and {s1} =, {s2} when discussing colleges’
preferences with respect to individual students.

A matching is a mapping p on C'U S that associates colleges to disjoint
sets of students, and students to the corresponding college or unmatched
outcome:

e For ce C, u(c) € 25.
e Forse S, u(s) e CU®.
o Forc,s € C'x S, s € u(c) <= pu(s) =c

A matching is feasible if each college ¢ is matched to a number of students
no more than q., and is individually rational if:

e Each college is only matched to acceptable students.

e Each student is matched to an acceptable college or the unmatched
outcome.

A matching p is blocked by a college—student pair c, s if:
e s prefers ¢ to their match (¢ =5 p(s)).

e Either ¢ has a vacancy and finds s acceptable (|u(c)| < ¢. and s >, @),
or ¢ prefers s to some other matched student (Is’ € u(c) : s =, ).

A matching is stable if it is feasible, individually rational, and unblocked.

10K ojima and Pathak| (2009) note that every responsive preference relation corresponds
to an additive utility function over students.



2.2 Core size and market power

In matching markets, the corﬁ coincides with the set of stable matchings
(Roth| (1985))). Following Immorlica and Mahdian (2005)), I consider core
size in terms of the fraction of agents with multiple stable matchesiﬂ and
formally describe the core as small or vanishing if the expected fraction
of agents with multiple stable matches asymptotically vanishes as a market
becomes large in the number of agents. Correspondingly, the core is formally
large or non-vanishing if the expected fraction fails to vanish as the market
becomes large.

In matching markets, core size creates scope for agents to manipu-
late core-selecting mechanisms (Gale and Sotomayor| (1985)). Kojima and
Pathak (2009) argue that manipulability is best understood in terms of
market power—the ability for an agent’s strategic rejection of a proposal to
affect the set of other proposals that agent will later observe—and I adopt
this term in the same sense where appropriate.

2.3 Random markets

Given a set of colleges C' and a set of students .S, a random market is a tuple
[ = (C, S, Pc,q, 735), where P¢ is a probability distribution on orderings of
SU{2}, ¢ = (qc)cec is a vector of college quotas, and Pg is a probability
distribution on orderings of CU{@}. Each random market induces a market
by randomly generating preferences of each college ¢ by drawing from P,
giving each college ¢ quota ¢., and generating preferences of each student s
by drawing from Pg[|

2.3.1 Kojima—Pathak random markets

Kojima and Pathak| (2009) present a special case of this random market
model for P¢o a fixed realization of complete colleges’ preferences and Pg
given as follows:

e Fix k > 0 a positive integer.

114 e., the set of outcomes on which no coalition can unilaterally improve.

12§ e., matches achieved in some stable matching.

13 As in the referenced works, I consider the possibility of manipulations under complete
information; randomness over preferences is introduced only to assess the frequency of
situations in which agents have incentives to manipulate. An expectation over colleges’
preferences Pc is necessary to demonstrate large cores without contracts, unlike in the

referenced works, as discussed in §

10



e Fix D = (p.)ccc a probability distribution on C.

e Assign each student’s preferences by drawing k colleges from D without
replacement, then appending @ (whereafter the order of successive
colleges is immaterial).

Effectively, each students’ preference-ordering of colleges is composed of k
independent draws from a common distribution on colleges D. I hereafter
call random markets of this form Kojima—Pathak random markets.

2.3.2 Watts—Strogatz random markets

Next, I consider a simple linear model of preference locality structure, closely
analogous to the model proposed by Watts and Strogatz (1998]) to model
locality in network structure. For a positive integer k, let a uniform, 1-
dimensional Watts—Strogatz random market (hereafter Watts—Strogatz ran-
dom market when not otherwise qualified) with radius k£ and locality pa-
rameter ¢ be a random market T’ = (C’, S, Pc,q, 735) with Pe the uniform
distribution over complete permutations of students and Pg given as follows:

e Arrange the colleges C uniformly on a circle.
e Place each student s uniformly at random at a point on the circle.

e Let each student pick £ colleges from the nearest k colleges, and k — ¢
other colleges from C' uniformly, with all other colleges unacceptableE

e Each student draws preferences uniformly over the colleges they find
acceptable.

Note that k controls the length of preference lists as well as the radius of the
locality neighborhoodﬁ ¢/k can be considered a measure of the intensity of
locality; £ = k corresponds to full locality, where students choose only from a
defined neighborhood, and ¢ = 0 corresponds to the fully nonlocal Kojima—
Pathak model. Hereafter, I will require ¢ > 2 in discussion of Watts—Strogatz
random markets, as £ = 0 and ¢ = 1 are degenerate cases with no locality
structure.

In Appendix [C] I further generalize the relevant conditions on prefer-
ence locality and provide more general models from the network-structure
literature with preference-structure analogues that support large cores.

4 This selection of acceptable colleges nearly coincides with the edge-drawing procedure
for ‘small-world’ networks presented by Watts and Strogatz| (1998), letting p = 1 — £/k.

15Tn the Watts—Strogatz network model, k similarly controls the network density as well
as the locality neighborhood radius.

11



2.4 Regular sequences of markets

Denote a sequence of random markets (f(l),f‘@), .. .), where each element
rm = (C("), S(”),Pén),q("),Pén)) is a random market in which !C’(”)} =n
is the number of colleges. A sequence of random markets is (k, q)-regular if
there exist positive integers k and g such that:

(n)

e For all n, and all preference-orderings = supported in Psn
colleges are acceptable under ~.

, exactly k

° qﬁn) < g for ¢ € C™ for all n.
o [S™| < gn for all n.
e For all n and ¢ € C"), every s € S(™) is acceptable to c

Call a random market one-to-one if q£"> =1 for all ¢ € C™. Call
such a market balanced if ‘S(”)} = D o qE”) and (p,r)-unbalanced if

1S =7 +p > com .

3 Results

I present a lower bound on core size and describe incentives to manipulate
stable matching mechanisms in Watts—Strogatz random markets. Theo-
rem presents a special case with balanced, one-to-one markets and full
locality, Theorem [3.3] relaxes to unbalanced, many-to-one markets with par-
tial locality, and Corollary gives a manipulability result. These results
apply to a broader class of models with preference locality; in Appendix [C]
I discuss a more general preference locality condition that yields similar
results.

'6This definition can be compared to Definition 2 of [Kojima and Pathak| (2009), with
the first condition modified (though not weakened) to accept the change of students’ pref-
erences from k(™ independent draws from D™ (there) to a draw from a distribution
over preference-orderings Pé") (here). However, all results presented in this work con-
cern markets which are (p,r)-unbalanced (of which balanced markets are a special case)
and Watts—Strogatz, which are stronger assumptions than the third and fourth condi-
tions, respectively. While these two conditions are thus redundant in the context of the
present work, I include them here for expositional ease, and in particular to clarify the
compatibility between the two definitions.

12



3.1 Core size in large, one-to-one markets

Consider a sequence of random markets (f‘(”)) For a random market

neN’
rm = (C(”), S, P(Cn), g™, Pén)), let a(f‘(”)) denote the number of colleges
in C(™ with multiple stable matches and let 5(f‘(”)) denote the number of
students in S with multiple stable matches.

Theorem 3.1 (One-to-one, balanced Watts—Strogatz random markets ex-
hibit non-vanishing cores). Fiz k > 2. There exists A(k) > 0 such that,
given a (k,1)-reqular sequence (f‘(”))neN of balanced, one-to-one, Watts—
Strogatz random markets with { = k:

limn inf Ea (™) /n > A(k). (3.1)
lim iolngﬁ(f(")) /n > A(k). (3.2)

Proof. Consider two students s1,s2 € S () and two colleges c1,c9 € c)
Let the event E(")(sl, s, c1,c2) denote the case where:

1. College c; prefers s; to so. Formally, s1 >, s2 >¢, @.
2. College cy prefers sg to s1. Formally, s >¢, 51 >, &.

3. No students other than s; and so find ¢; or co acceptable. Formally,
for all s € S(”)\{sl,SQ}, & =g c1 and @ >4 ca.

4. The colleges that s; finds most desirable are ¢y and c¢1, in that order.
Formally, for all ¢ € C™\{c1, ca}, c2 =5, €1 >, C.

5. The colleges that ss finds most desirable are ¢; and co, in that order.
Formally, for all ¢ € C™\{cy, 2}, 1 s, €2 >, C.

Note that, in the event E(™ (s1, 82,1, c2), the four agents have two stable al-
locations: {(s1,c2), (s2,c1)} (the student-optimal allocation), and {(s1, ¢1), (s2,¢2)}
(the college-optimal allocation).
The first statement, lim inf Ea (f(")) /n > A(k), follows from Lemma
n—oo

below, which places a positive lower boundlE on the probability that a college

1"The proof roughly follows that of Theorem 3 of Biré et al| (2022), who use a similar
construction to bound below the fraction of agents with multiple stable matches, in their
matching-with-contracts setting.

1¥Specifically, A(k) = %.

13



c1 is involved in some such E®) (s1, 82, c1,c2), and which holds for sufficiently
large n. )
The second statement, lim inf Eﬂ(F(”))/n > A(k), then follows by a
n—oo

counting argument: each pair of colleges ¢1,cy where an event E(™ oc-
curs corresponds to exactly one pair of students s1, so with multiple stable
matches. O

Lemma 3.2. Fiz k > 2 and € > 0. There exists sufficiently large n such
that for each college ¢; € C™) the event

Eg?) = U E(n)(sla 52,C1, 02) (33)
(81,82,¢2)€S8(M) x (1) x C(n)

has probability bounded below by A(k) := % — €.

Proof. Fix an arbitrary ¢; € C(™. For different selections of (s1,82,c2), the
events E™ (s1, 55, ¢1, ¢p) are disjoint. There are n-(n — 1) possible selections
such that s; # s9 and y., — ye;, = 1. The first and second requirements of
the event definition are satisfied with probability 1/2 each, the third with
probability (1 — %)"‘2, and the fourth and fifth with probability 1/nk
each. These probabilities are independent, as each concerns the preferences

of distinct agents. Thus, the probability of the event Egl) is at least

1 1 k+1 1 1
(n=1)-=.=. 1— (n—=2), - . 4
n-(n-1) 2 2 ( n ) nk nk (3:4)
The limit inferior of this expression as n — oo is A(k) := 76’(‘)5‘;];_1]. O

Remark 1. The factors of % m equation would each instead be #
i a uniform random market, where this technique would instead yield a

vanishing O(%) lower bound.

3.2 Core size in large, unbalanced markets

The results of Theorem hold when generalizing one-to-one markets to
markets with bounded college capacities and introducing a constant-fraction
cross-side imbalance in agent populations. Furthermore, the results hold
with high probability.

Theorem 3.3 (General Watts—Strogatz random markets exhibit non-vani-
hing cores). Fix k > 2 and 1 < ¢ < k. There exists A(k,l,p,q) > 0 such

14



that, given a (k,q)-reqular sequence (f‘("))neN of (p,r)-unbalanced, Watts—
Strogatz random markets with locality parameter £:

lirginf Ea (f(”))/n > A(k, 4, p,q) (3.5)
hqynfEB(me/n:>A(h€JLq) (3.6)

Theorem 3.4 (Theoremapplies with high probability). Fiz1 < ¢ <k >
2 and € > 0. There exists A (k, ¥, p,q) > 0 such that, given a (k,q)-regular
sequence (f ("))n N of (p, r)-unbalanced, Watts—Strogatz random markets with
locality parameter £, for sufficiently large n:

Prla(T™) /n > Adk, £,p,7)] > 1 —e. (3.7)

Pr[3(T™) /n > Ac(k, 6,p,7)] > 1 —e. (3.8)

Appendix [A] presents both proofs by a similar construction to Theo-
rem modified so that ¢1’s quota is filled and c¢o’s rejection of s1 forces
c1 to reject some other student sy in turn.

3.3 Incentives to manipulate in large, unbalanced markets

Fix some core-selecting mechanism and consider a sequence of random mar-
kets (f(”))n oy Fora random market T(™ | let fy(f(")) denote the number of
agents who can improve their assigned outcomes by misreporting their true
preferences (when all others report their true preferences).

Corollary 3.5 (A non-vanishing fraction of agents can manipulate DA
in a Watts—Strogatz random market). Fiz 1 < ¢ < k > 2. Given a
(k,q)-regular sequence (f(n))neN of (p,r)-unbalanced, Watts—Strogatz ran-
dom markets with locality parameter €, there exists A(k,¢,p,q) > 0 such
that
liminf By (T™) /n > A(k, £, p, 7). (3.9)
n—oo

Proof. Any agent with multiple stable matches can select a match among
them by misreporting their true preferences (Gale and Sotomayor| (1985)).
Of the agents with multiple stable matches in Theorem [3.3] no core-selecting
mechanism assigns both sides of a college—student group their favored stable
matches. So

Y(T®) = minfa (F0), B(1™) ], (3.10)
and the expected fraction is at least the A(k,¢,p,q) from Lemma O
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4 Computational experiments

The theoretical results of the previous section prove that core size (as a frac-
tion of the market) will be non-vanishing in the large market limit. However,
the theoretical bounds presented are not substantial in any practical sense—
in Theorem 3.2} A(k) = 0.05% for k = 3. In this section, I present simulation
results that complement those theoretical results by demonstrating the re-
alized size of large cores in simulated Watts—Strogatz random markets with
full locality. In general, I find that core size exceeds 4% in practice under a
wide variety of specifications of locality, cross-side imbalance, and size.

My approach to these computation experiments follows [Ashlagi et al.
(2017)), replicating their results on core convergence under cross-side imbal-
ance in |C| = k = 40 market specifications. I then present analogous results
under models of preferences with locality for |C| = 40 and various k, as well
as larger sizes of |C|. For each market specification, I simulate a number of
realizations by drawing random preferences independently for each agent,
and computing the stable matching optimal for each side of the market.

Additional figures in Appendix [B] demonstrate that core size and welfare
gaps are roughly unchanged from |C| = 400 through |C| = 4000 as k remains
constant, and that they remain apparent through ¢ = 10 and beyond.

4.1 Strategic incentives in unbalanced markets

The first experiment illustrates that preference locality can support scope
for strategic incentives and attenuate the sharp welfare effect of cross-side
imbalance in a small market. I specify a Watts—Strogatz random market
with 40 colleges, between 20 and 80 students, and k = ¢ € {3, 5,10, 20,40}
across 30,000 realizations.

Figure[l|reports the fraction of matched agents who have multiple stable
matches; this fraction is small in unbalanced markets under homogeneous
(k = 40) preferences, but substantial for even substantially unbalanced mar-
kets where k = 3, 5, or 10.

Figure [2] reports averages across realizations of the matched students’
rank of matches under the student-optimal and student-pessimal stable
matchings. The results for & = 40 replicate prior work by |Ashlagi et al.
(2017), who describe the homogeneous case:

[Iln any unbalanced market, the men’s average rank of wives is
almost the same under the [men-optimal stable matching] and
[women-optimal stable matching]. When there are fewer men
than women (i. e., fewer than 40 men), the men’s average rank
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Fraction multistable (of matched agents; |C| =40)
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0.00
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S|
Figure 1: Average core size for |C| = 40, k = ¢, and ¢ = 1. Compare k = 40
to Figure 1 in |Ashlagi et al.| (2017).

05 Quantile rank of match (of matched s; |C| =40)
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(40, s_optimal)
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0.2

20 30 40 50 60 70 80
S|
Figure 2: Matched students’ average quantile rank of matches for |C| = 40,
k=, and ¢ = 1. Compare k = 40 to Figure 2 in |Ashlagi et al(2017).
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Figure 3: Average core size and matched students’ average quantile rank of
matches for |C| =400, k = ¢, and ¢ = 1.

of wives under any stable matching is almost the same as un-
der [random serial dictatorship], with most men receiving one of
their top choices. When there are more men than women in the
market, the men’s average rank of wives is not much better than
20.5 [of 40], which would be the result of a random assignment.

But under more-localized (i. e., smaller-k) preferences, three differences
are apparent:

e The students’ welfare gap between optimal and pessimal matches is
substantially larger in unbalanced markets.

e The students’ welfare gap does not increase sharply as markets ap-
proach balance.

e Students’ absolute welfare (under any stable matching) depends less
sharply on the cross-side imbalance.

Colleges’ intra-core welfare gaps and absolute welfare with respect to
cross-side imbalance respond similarly to preference locality; see Figures
and [9 in Appendix [B]

4.2 Core size and allocation outcomes in large markets

I also present results of simulations of large unbalanced matching markets
under various specifications. Figure[3|reports the fraction of matched agents
who have multiple stable matches and matched students’ average rank of

18
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matches (across 3,000 realizations) in a market with 400 colleges, between
200 and 800 students, and preferences given by the Watts—Strogatz model
for k = ¢ € {3,10,30,100,400}.

In general, as in the smaller specification, the size of the core and the
strategic incentives do decrease as the market becomes unbalanced, but
much more slowly under more-localized (i.e., smaller-k) preferences than
under the homogeneous specification. As an example: in a market with
440 students, 400 colleges, and k = 30, more than 5% of matched students
have more than one stable match, and among students with more than
one stable match, the average rank difference between their optimal and
pessimal match is greater than 7 (i. e., nearly a quarter of their preference-
list length). In the homogeneous specification, the incentives are only an
eighth as large. In a more unbalanced market, the effect is even more stark—
with 500 students, 400 colleges, and & = 10, more than 5% of matched
students have more than one stable match, but with k& = 400, fewer than
0.24% do.

I present further simulation results for markets with ¢|C| € {400, 1000, 4000}
college-seats, and for ¢ € {1,4,10}, in Figures in Appendix [B, The
gap in student welfare between the student-optimal and student-pessimal
allocations remains apparent, and the fraction of agents with more than one
stable match fails to vanish, as the market size grows.

4.3 Localized versus incomplete uniform preferences

While locality in these experiments is accompanied by shortened list lengths,
the core-size results do not come from short lists alone. By setting an
independent probability that a student s finds a college ¢ acceptable to
k/|C|, T can specify incomplete uniform preferences under which students
are on average as selective as in a Watts—Strogatz model of equal k.

Figures |4] and [5| report core size and matched students’ average rank
of matches under such a preference model (across 10,000 realizations), and
under a Watts—Strogatz model for |C| = 40. Under incomplete uniform
random preferences, shortening list length reduces core sizﬁ and yields
a small intra-core welfare gap. Given a Watts—Strogatz preference model,
however, shorter lists create smaller cores in balanced markets but larger
cores in markets with sufficient cross-side imbalance, and a substantially
larger intra-core welfare gap is supported in low-k conditions.

19Compare Figure 2 in [Roth and Peranson| (1999), which reports core size decreasing
with shorter preference lists in simulation experiments.
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Figure 4: Average core size under k = ¢ Watts—Strogatz preferences (left)
and similarly-selective uniform random preferences (right) with ¢ = 1. Plot
at left reproduces Figure E
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Figure 5: Matched students’ average quantile rank of matches under k =

¢ Watts—Strogatz preferences (left) and similarly-selective uniform random
preferences (right) with ¢ = 1. Plot at left reproduces Figure
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Figure 6: Matched students’ average quantile rank of matches under k = ¢
Watts—Strogatz preferences (left) and similarly-selective incomplete uniform
preferences (right) with ¢ = 1, in detail around |S| ~ |C|. Note that
suggest that k ~ log(1000)? ~ 48 is the density threshold above
which a stark effect of competition should be exhibited by an incomplete
uniform random market.

0.05

One effect which is visually apparent in both preference models is that
matched students’ absolute welfare depends less sharply on the cross-side
imbalance under lower-k conditions. This aligns with the simulation results
of |Ashlagi et al.| (2017) and theoretical results of |[Kanoria et al.| (2021).

[Kanoria et al|(2021)) further suggest k ~ log?(n) as the threshold above
which an incomplete uniform random market will exhibit a stark effect of
competition. However, further experiments show that this result is depen-
dent on the uniformity of agent preferences, and that even at densities above
that threshold, locality can serve to blunt the effect of cross-side imbalance.
As an example, Figure [ reports detail on matched students’ average rank of
match for |C| = 1000. In a Watts—Strogatz random market with £ = ¢ = 100
(across 1,000 realizations), the effect of competition is fairly smooth through
the range of |S|/|C| € [98%,102%]; this is well above the Kanoria et al]
threshold level of k ~ 48. In an incomplete uniform random market
(across 150 realizations), a sharp effect of competition becomes apparent
to visual inspection between the £ = 30 and £ = 100 conditions. While
the Watts—Strogatz specification has a modestly greater fraction of agents
unmatched (see Figure , the unmatched fraction in the £ = 100 condition
(less than 0.8%) is not significant enough to drive this effect.

Results of further simulations of incomplete uniform random markets for

|C| = 400 and |C| = 1000 are presented in Figure [13|in Appendix [B] Fig-
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Figure 7: Average fraction of unmatched agents under k = ¢ Watts—

Strogatz preferences (left) and similarly-selective incomplete uniform pref-
erences (right) with ¢ = 1, in detail around |S| = |C].

ure[L4]reports the fraction of unmatched agents for all experiments presented
in this section.

5 Discussion

It is beyond the scope of the present work to present a comprehensive struc-
tural theory of matching markets. However, I discuss some empirical obser-
vations on matching markets and ways in which locality may interact with
other structural properties of matching markets, presenting some questions
for further investigation.

5.1 Small cores in large markets

In apparent contrast to the present work, some empirical studies of match-
ing markets have found small cores in large markets. For example,
and Peranson| (1999) examined the National Resident Matching Program
(NRMP)’s market for medical residency positions from 1993 to 1996 and
found that in a market with roughly 20,000 applicants and potential posi-
tions, only about 0.1% of residents were assigned different matches by pri-
marily resident-proposing and primarily program-proposing mechanisms@

20Neither the baseline NRMP mechanism nor the mechanism redesigned by [Roth and

(1999) were simple deferred-acceptance mechanisms, so this comparison is not
completely within the theoretical framework of the present work. Nevertheless, the mech-

anisms in question were both based heavily on deferred-acceptance mechanisms, and did
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This is a significant divergence from the roughly 4% that might be predicted
by some models presented in the present work.

These small cores are not due to match variations?Jin the NRMP match—
in the same work, the authors presented five years of data on a matching
market for thoracic surgery residents with roughly 175 applicants (130 po-
sitions) and no match variations, in which fewer than 0.5% of residents
had more than one stable match; some models of the present work might
suggest rates ten times that, given tightly localized preferences. Similarly,
Kojima et al|(2013]) examined a matching market for clinical psychologists
(with roughly 3,000 applicant@ and 2,700 positions) from 1999 to 2007
and found that roughly 0.2% of residents had more than one stable match.
Pathak and Sonmez| (2008) examined two years of matching markets for
primary- and secondary-school admissions (with roughly 3,000 applicants
at each level per year) in the Boston Public Schools and found just five
instances of applicants with multiple stable matches.

5.2 Preferences and core size

It is possible that agents in the settings discussed above do not have prefer-
ences that exhibit sufficient locality to produce non-negligible cores. How-
ever, it is also possible that agents’ preferences do exhibit locality, but other
structures in their preferences induce the observed core convergence regard-
less. The most intuitively likely such structure is global alignment of pref-
erences on one or both sides of the market; competition effects from locally-
relevant cross-side imbalance may also contribute.

5.2.1 Preference alignment and core convergence

It is well-known that when preferences of agents on one side of the mar-
ket align with a single complete ranking, only one stable matching exists.
Moreover, Holzman and Samet| (2014) show that the size of the core and
the intra-core welfare gap can be bounded in terms of the disagreement in
preference rankings between agents on the same side of the market. Even

differ in whether residents or programs proposed in the primary stage. Comparable results
obtained when the same authors investigated the fraction of hospitals with incentives to
manipulate the redesigned, applicant-proposing mechanism.

*'Roth and Peranson| (1999) identify four specific “match variations” (i. e., deviations
from the doctor-proposing deferred acceptance mechanism) in the NRMP match, which
were introduced to accommodate institutional goals.

22The cited authors removed pairs of applicants registered as couples (roughly 19 per
year) for the cited experiment.
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if agents’ preferences do not completely align, global alignment shrinks the
core.

Remark 2. While the Watts—Strogatz preference model of the present work
can be said to have preferences “correlated” between agents, it is relevant that
there is no global alignment. Rather, each pair of agents in this model will
on average have only as much agreement in their preference lists as do two
agents under uniform random preferences. This can be reconciled with an
intuitive sense that Watts—Strogatz preferences are more “correlated” than
uniform preferences by observing that agents’ preferences align with other
agents’ preferences, conditional on aligning at least somewhat, but are not
more aligned on average. This is unlike forms of global correlation studied
in prior work, which have been shown to cause core convergence (Holzman
and Samet (2014);|Ashlagi et al. (2017)) and reduced scope for manipulation
(Coles and Shorrer (2014); Coles et al| (2014)).

It is intuitive that widely-agreed-upon variation in institutional quality
serves to align students’ preferences in residency matches and school-choice
matches alike. Indeed, Kojima et al. (2013]) found significant concentration
of program popularities in the clinical psychology match, with a small num-
ber of programs receiving as many as eight times the number of first-place
rankings that would be predicted by uniform draws@

5.2.2 Other preference structures and core convergence

Furthermore, it is possible that the effect of competition (Ashlagi et al.
(2017); Kanoria et al.| (2021)) applies locally to cause the core to converge,
even if the overall market is well-balanced. For example, [Roth and Peranson
(1999) find that there are somewhat more doctors than total hospital quota
in the 1993-1996 NRMP market, yet the very naming of the “rural hospi-
tals theorem” (Roth (1986))@ indicates that there is an identifiable class of
hospitals where total quota meaningfully exceeds the number of interested

Z3The authors further note that “these are preferences stated after interviews have been
conducted, so [they do] not preclude the possibility that there are popular programs that
receive many applications but only interview a small subset of applicants”, and further
that “an applicant typically ranks a program only after she interviews at the program,
and each applicant receives and can travel to only a limited number of interviews.” The
true degree of concentration of popularity may be much greater.

2 The rural hospitals theorem (Roth| (1986))) states that agents not matched in one stable
matching are not matched in any stable matching. Its presentation was motivated by the
observation that rural hospitals would frequently fail to fill their available positions in the
NRMP.
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applicants. If there are sufficiently more rural hospitals than doctors inter-
ested in a rural residency, and sufficiently more urban-focused doctors than
urban hospitals, all agents may face a local effect of competition that causes
core convergence everywhere.

Finally, incompletely reported preferences may reduce the size of the
apparent core by falsely excluding matches that would be stable with respect
to true preferences, but do not appear among reported preferences. Agents
may shorten preference lists when they face administrative constraints, costs
to search (Shorrer (2019))), or strategically truncate to manipulate matching
outcomes (Mongell and Roth| (1991); |Coles and Shorrer| (2014)).

5.2.3 Locality and market-size effects on the core

Locality—in the sense of latent features that cause agents’ preferences to
vary heterogeneously over local clusters of like partners—is likely present
in some sense in most matching markets. In the clinical psychology match,
for example, Kojima et al.| (2013) find geographic locality in applicant pref-
erences, with half of single applicants ranking programs in at most two of
eleven geographical regions. Beyond national geography, institutional fea-
tures such as operational style or specialty focus may induce locality among
applicant preferences. In school-choice, rideshare, or social matching set-
tings, geographic locality within a city or region may be important as well.
While observations of small cores are common in settings of school choice
and doctor residency, it is not clear whether market designers should con-
clude from them that market size and global competition effects form a com-
plete or universal explanation for core convergence. Especially given that
observed core convergence is near-total in these settings, it may be that
preference alignment, local competition effects, and constraints that lead to
shorter preference lists may play key roles in explaining core size, and it
is not clear what to assume about the cores of large markets where these
factors are weaker or absent. Determining a comprehensive explanation for
small cores will thus require analysis of more than just market size and
preference-list length; characterization of preference structures that expand
or shrink the core will produce a more complete picture of these markets.

5.3 Conclusion

This work presents an opportunity at the intersection of two increasingly
relevant topics—design of mechanisms for large matching markets and struc-
tural properties of large networks—to better understand the real-world set-
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tings addressed by the market-design literature. By considering the matching-
market analogue of a canonically simple model of network structure, I find
effects on welfare and incentives not supported by homogeneous market
models in prior work.

In exploring the consequences of these results, I join a tradition of in-
quiry that aims to understand why we empirically observe such small cores
in real-world matching markets, a question first posed by [Roth and Peran-
son| (1999)). Those and some subsequent authors have proposed that such
observations may be straightforwardly explained as a consequence of the
large size of the markets in question, and of agents’ relatively short prefer-
ence lists. The results of the present work suggest that, if core convergence
is indeed driven by market size, then that fact relies on student and college
preferences being sufficiently homogeneous. If they are not, then preference
alignment, competition effects, and limitations on preference-list length may
play important roles in core convergence instead. Whether these small cores
are in fact caused by short and well-mixed preferences, or rely on other
properties of these markets, remains unresolved.

On this and other questions, I anticipate scope for future work that uses
tools from the network-structure literature to characterize the structures
of preferences found in large markets of interest and the effects of such
structures on matching outcomes and incentives.
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Online Appendices

A  Proofs excluded from main text

The results of Theorem hold when generalizing one-to-one markets to
markets with bounded college capacities and introducing a constant-fraction
cross-side imbalance in agent populations. This proof proceeds using an
appropriately modified construction and a revised asymtotic bound.

A.1 Core size in large, unbalanced markets

Consider a sequence of random markets (f(”))n N For a random market
™ let a(f(”)) denote the number of colleges with multiple stable matches
and let 8 (f(”)) denote the number of students with multiple stable matches.

Theorem A.1 (Main text: Theorem [B.3). Fiz k >2 and 1 < { < k. There
exists A(k, 0, p,q) > 0 such that, given a (k,q)-regular sequence (F(n))neN of
(p, r)-unbalanced, Watts—Strogatz random markets with locality parameter ¢:

lirginf Ea(f("))/n > A(k, 4, p,q). (A1)

lirginfE/B(f("))/n > A(k, 4, p,7). (A.2)

Proof. Consider two colleges ¢1, ¢ € C™ and students s, . . . ,Sqg+1 € S,

where q := ¢,. Let the event E(")(sl, ..., 8¢+1, C1, ¢2) denote the case where:
1. College c; ranks sg last of s1, ..., 54+1. Formally, for all s € {s1,s3,...,5¢+1},

S > 82 ¢y D
2. College ca ranks s higher than s;. Formally, so >, $1 >¢, &.

3. No students other than si,...,s44+1 find ¢1 or ¢o acceptable. Formally,
for all s € S(”)\{sl, ceySq41), @ s ¢ and @ - ca.

4. The colleges that s; finds most desirable are ¢ and ¢y, in that order.
Formally, for all ¢ € C\{c1,ca}, e =5, €1 >4 C.

5. The colleges that ss finds most desirable are ¢; and co, in that order.
Formally, for all ¢ € C\{c1,ca}, €1 =5, 2 >4, C.

6. The college that s3,..., 5441 find most desirable is ¢;. Formally, for
all s € {s3,...,5411} and ¢ € C\{c1}, ¢1 =5 c.
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Note that, in the event E( (s, ... , Sq+1,C1,C2), the agents have two stable
allocations:

o {(s1,¢2),(52,¢1),(83,¢1)s ..., (Sq+1,c1)} (the student-optimal allocation)

e {(s1,c1),(s2,¢2),(s3,¢1),...,(sq+1,c1)} (the college-optimal allocation).

The first statement, lim inf E« (f(”)) /n > A(k, 4, p,q), follows from Lemmal|A.2
n—oo

below, which places a positive lower bound|§| on the probability that a col-
lege ¢ is involved in some such E(")(sl, ... 8¢+1,C1,¢2), and which holds
for sufficiently large n.

The second statement, hnniio%f EgB (f(")) /n > A(k, 4, p,q), then follows by

a counting argument: each pair of colleges ¢1, ¢ where an event E(™ oc-
curs corresponds to exactly one pair of students s1, s with multiple stable
matches. O

Lemma A.2. Fir1 < /{ <k >2 and e > 0. There exists sufficiently large
n such that for each college ¢, € C™ the event

Eé?) = U E(")(sl, ey 8g+1,C1,C2) (A.3)
(517_,_75q+1752)6(s(")>X(Q+1)XC(")

has probability bounded below by A(k, ¢, p,q) := “ min(1’p)@H)‘LZ’;%FW(%*%H)] .

Proof. Consider an arbitrary ¢; € C (n) | For different selections of (s1,{s2,...,8q41},¢2),
the events E(™ (s, ..., 5441, c1,c2) are disjoint. There are ‘S(”)|-<(|5<n> |,1)Cq)

possible selections of distinct (s1, {s2,...,8¢+1}) and ye, —ye, = 1. Let so be
the c¢i-dispreferred student among {ss, ..., sq41} without loss of generality.
The probability of each such E( (sq,...,s,41,c1,c2) is at least

;.;(l_k+1_2<’f—€>><s<n>|q1>. £ & (1><q—1>, (A1)

n n—1/{ nk3 nk3 \n

where each term in this expression corresponds to a requiremen@ from the

definition of E(”)(sl, ...y 8¢+1,C1,C2), so long as ¢ > 2. These probabilities
. _ min (@+1) oxpl—pa(3k—
PSpecifically, A(k,¢,p,q) = ¢4 min(1,p) q+14zﬁg![ PaBRk=26+1] © or more strongly
4 _
Ak, l,p,q) = pt 'e"p[*zzg”k%”m when lim inf|S™ /n>1, as demonstrated in
n—o0

Lemma

26T be precise, the first, second, third, fourth, fifth, and sixth requirements, respec-
tively, where the first requirement requires only s; >, s2, allowing sz to be the c;-
dispreferred student among {ss, ..., Sq+1} without loss of generality.
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are independent, as each concerns the preferences of distinct agents. Thus,
the probability of the event Egl) is at least

k—0) S(n)
sonl (8= (- e
(k e,p 7) ‘ H 4- nk3 -nk3 - nla=1) '
(A.5)
Let Q := limsup S = hm mf‘S(” /n; then
n—oo
@+ . exp[—Q(3k — 20+ 1)] - ¢4
(n) Q exp[ Q3 )]
hnrr_1>10réfA(k o) = 1541 . (A.6)
So, noting Q < pg and Q > p, conclude
¢4 min(1, p) @D exp[—pg(3k — 20+ 1)]
)| > q) = -
Pr[EQ)] = Ak, £.p,9) s (A7)
for sufficiently large n. Lemma [A3] shows that a tighter bound may be
obtained instead when @ > 1. O

Lemma A.3. Fir 1 <{ <k >2ande > 0. If Q > 1, then there exists

sufficiently large n such that for each college ¢1 € C™ the event E’(g?) has

04 exp[—pg(3k—20+1)]
probability bounded below by A(k, £, p,q) == ==L 73&6 .

Proof. If @ > 1, then ‘S ”)‘ > n + q + 1 for sufficiently large n. Then
(51-1)Cq) > 11, s0

Q- exp[—©(3k‘ — 20+ 1)] A

(n)
hnrgloréfA(k ) = 10 (A.8)
e £ expl—p7(3k — 20 + 1)
™) > . P exp|—pq(3k — 20+ 1
Pr[Ecl } > A(k,¢,p,q) 16 (A.9)
for sufficiently large n. O

Theorem A.4 (Main text: Theorem [3.4). Fizx 1 < ¢ < k > 2 and ¢ >
0. There exists Ac(k,¢,p,q) > 0 such that, given a (k,q)-reqular sequence
(f’("))neN of (p,r)-unbalanced, Watts—Strogatz random markets with locality
parameter £, for sufficiently large n:

Pr {a(f("))/n > Ae(kjﬂ,p,ﬁ)} >1—ce. (A.10)
Pr [,B(f(”))/n > Ae(k,e,p,q)} >1—e (A.11)
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Proof. Define the event E(™) (s’i, ceey sf]C__H, Ciy cj) as in Theorem |A.1l The

first statement follows from Lemmal[A 5| below, which shows that, with prob-
ability at least 1 — ¢, at least n - Ac(k, £, p,q) colleges are involved in some

E®) (sﬁ, e sfh 415 Cis c?‘), and which holds for sufficiently large n.
The second statement then follows by a counting argument, as in Theo-

rem [A 1] O

Lemma A.5. Fix 1 <{ <k >2 and e > 0. There exists sufficiently large
n such the event

B0 = U ) <s§, ek 1 c;) (A.12)
(88t 107 ) €(S)*Lei T o)

occurs for at least

4 min(1, p)@+b) —pq(3k — 20+ 1
n - Ac(k,t,p,7) ::n~<£ e ”-(1—6)4)

4kS(k + 1)g!
(A.13)
of the ¢; € C™ with probability bounded below by 1 — e.

Proof. Let m := |n/(k + 1)] and consider an arbitrary {c1,ca,..., ¢} with
’yci — ycj‘ > k for ¢ # j. For different selections of (si, {5%, e chi+1}, cj)
the events E(")(sﬁ,sé,ci,cf) are disjoint. For each c¢;, there are ‘S(")| .
((‘S(n)‘_l)CqC) possible selections of distinct (5%, {sé, e sfkiﬂ}) and yer —
Ye, = 1. Let Q := limsup)S(”)‘/n and Q := liminf‘S(")’/n.

n—00 - Nn—00

Then consider the requirements of the definition of E(™ (sil, ey sfhi 415 Cis c’;) :

1. Each college ¢; ranks s} last of si,..., sfki 41 with independent proba-
bility 1/2[7]

2. Each college ¢ ranks sb higher than s} with independent probability
1/2.

3. For sufficiently high n, with probability at least 1 — €/2, at least
m - exp[—Q(3k — 20+ 1)] - (1 —¢€) of the ¢; € {c1,...,cm} satisfy the
condition that no students other than si,... ,sflci 41 find ¢; or ¢f ac-
ceptable (by Lemma |A.6]).

2TThis requires only s; >, s2, allowing s2 to be the ci-dispreferred student among
{s2,..., 54,41} without loss of generality.

35



4. sﬁ finds ¢ and ¢; most desirable, in that order, with independent
probability £2/nk3.

5. sé finds ¢; and ¢; most desirable, in that order, with independent
probability £2/nk3.

6. s3,...,8q.,+1 all find ¢; most desirable with independent probability

(1/n) (1),

The probabilities of each requirement are independent, as each concerns
the preferences of distinct agents. So, for sufficiently high n, with probability
at least 1 — €/2, a fraction

11 2 72 1
@1 (g Cae ) = - = =) (ae=1) g —
S (s )Co) 35 i <n> 1= (AlY

of the colleges that satisfy condition 3 for some si, ..., séc_ 41 also satisfy the
other five conditions. For sufficiently high n,

(40 1)
5] (g1 Ca) > Qq;!nm“ —e- (AL)

Thus, with probability at least 1 — €, the number of colleges in {cy,...,cn}
that satisfy all six conditions is at least

(@+1) . exp[—Q(3k — 20 4 1)] - ¢4
. Lol gjﬁql LR p) (A.16)

So, noting @ < pg, Q > p, and m > w41 (1 —€) for sufficiently high n,

conclude that the event Egl ") occurs for at least

¢* min(1, p) @Y exp[—pg(3k — 20 +1)] 4
: d (1= Al
" < 15k + 1)g! (1—¢) (A-17)
of the ¢; € C™ with probability bounded below by 1 — e. O

Lemma A.6. Fix ¢ > 0. There exists sufficiently large n such that, with
probability at least 1 — €/2, at least m - exp[—Q(3k — 20+ 1)] - (1 — €) of the

ci € {c1,. .., em} satisfy the condition that no s € S \{31, ey S +1} find
ci or c; acceptable.
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Proof. Let X; be the indicator variable of the event that ¢;, ¢} is unacceptable
to all s € S(”)\{si, e, Séc.ﬂ}' For all 7, then,

Pr(X,] = (1 k1 2(k— E)) (|5 ~qe,~1) (A.18)
n n—1{
Thus,
h;r_l}ng Zl Xi] >m-exp[-Q(3k — 20+ 1)] (A.19)
and, for sufficiently high n,
E ZXl] >m-exp[-QBk —20+1)] - (1 —¢/2). (A.20)
i=1

Note that for ¢ # j, Covar[X;, X;| < 0. Therefore, for sufficiently high n,

Var

in] <) Var[Xj] < kil exp[-Q(3k —2¢+1)]  (A.21)
=1 =1

By Chebyshev’s inequality, then,

Pr [i X;>m-exp[-Q(3k —20+1)] - (1 —¢)
=1
4

21_ 2 n - ’
€ -m-exp[—Q(Sk—%—{—l)]

(A.22)

the right-hand side of which approaches 1 as n — oo and exceeds 1 — €/2
for sufficiently large n. O
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B Figures excluded from main text

This appendix presents figures that extend § [4] reporting average core size
and welfare gap size observed in market simulations for various market spec-
ifications. Plots are labeled with number of realizations observed (denoted
t).

Figures [§] and [J] extend Figures [IH3] and report on one-to-one Watts—
Strogatz markets of size |C| € {40,400, 1000,4000} with full locality. Core
sizes and welfare gaps remain substantial (and largely constant) in unbal-
anced markets for small k, even as |C| becomes large.

Figures report on many-to-one Watts—Strogatz markets of ¢ €
{1,4,10} and |C| € {400,1000,4000} with full locality. While matched
students’ average welfare gaps shrink with increased ¢, gaps remain apparent
to visual inspection and the fraction of colleges with incentive to manipulate
remains substantial for small k.

Figure [13] extends Figure [5] and compares k = ¢ Watts—Strogatz markets
of |C| € {40,400,1000} to markets with similarly-selective but homogeneous
students. As in the |C| = 40 case discussed in § the sharp welfare
advantage of the short side of the market is attenuated and smoothed by
selectivity in both models, though incentives to manipulate are supported
only in the Watts—Strogatz model.

Figure [14] reports the fraction of unmatched agents in each experiment.
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B.1 Strategic incentives in unbalanced markets
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Figure 8: Average core size and matched students’/colleges’ average quantile
rank of matches for |C| = 40 (30,000 realizations) and |C| = 400 (3,000 re-
alizations) under Watts—Strogatz preferences with £ = k and ¢ = 1. Plots

at top reproduce Figures and
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Figure 9: Average core size, matched students’/colleges’ average quantile
rank of matches for |C| = 1000 (1,000 realizations) and |C| = 4000 (200 re-
alizations) under Watts—Strogatz preferences with ¢ = k and ¢ = 1.
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B.2 Core size and allocation outcomes in large markets
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Figure 10: Average core size and matched students’ average quantile rank of
matches for ¢ € {1,4,10} and ¢|C| = 400 under Watts—Strogatz preferences
with £ = k, across 3,000 realizations. Plots at top reproduce Figure
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Figure 11: Average core size and matched students’ average quantile rank
of matches for ¢ € {1,4,10} and ¢|C| = 1000 under Watts—Strogatz prefer-
ences with ¢ = k, across 1,000 realizations. Plots at top reproduce parts of

Figure [9]
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Figure 12: Average core size and matched students’ average quantile rank of
matches for ¢ € {1, 4,10} and ¢|C| = 4000 under Watts—Strogatz preferences
with £ = k, across 200 realizations. Plots at top reproduce parts of Figure @
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B.3 Localized versus incomplete uniform preferences
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Figure 13: Matched students’ average quantile rank of matches under k = ¢
Watts—Strogatz preferences (left) and incomplete uniform preferences (right)
with ¢ = 1. Plots at left reproduce parts of Figures and [l Plots at
right present averages across 10,000, 1,000, and 150 realizations.
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B.4 Fraction of unmatched agents
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Figure 14: Average fraction of unmatched agents under k¥ = ¢ Watts—
Strogatz preferences with ¢ = 1 (left; 30,000, 3,000, and 1,000 realizations)
and incomplete uniform preferences with ¢ = 1 (right; 10,000, 1,000, and
150 realizations).
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C A generalized locality property

The proof of Theorem [3.1]above demonstrates the existence of non-vanishing

market power in any large market model in which a variant of Lemma 3.2

obtains, namely where lim Eé?) > (0. In this appendix, I characterize a
n—oo

spectral condition on preference structure, with a natural interpretation as
a general measure of locality, that is sufficient to demonstrate that a similar
bound holds in a one-to-one market. In § below, I present many mod-
els common in the network-structure literature which satisfy the network-
structural analogue of this condition. Analogous models of preference struc-
ture generate markets which exhibit non-vanishing market power.

C.1 Uniform students
Let ['(™) = (C(”), S, ((Jn), q(”),Pén)) be a random one-to-one market with

n= |C’(”)} and Pé") the uniform distribution over permutations of S(™. Fix
some ¢; and ¢y € C (”), and draw a s; and so with preferences from Pén).
Without loss of generality, let s; =, s2. Letting rs(c) be the absolute rank

of ¢ in s’s preferences, consider the following events:

* E[(C?;Cz] =82 ey S1

. E[(Z);vs] :=Vs € SO\ {s1, 50}, (@ =5 1) A (D =5 c2)
E[(Cr?;sl] = (rsl (62) = 1) N (rsl (Cl) = 2)

* E[(fz);sz] = (r82 (Cl) = 1) N (1"52 (02) = 2)

. (s1,52,c1,C2) erica] N Eloyvs] N Elersi) N Bl

o B = U E™ (s1,89,¢1,¢2) .

(s1,82,c2)€S(™M) x S(n) x C'(1)

_ 1
[01;02]] = 3- And

since students’ preferences are drawn independently, consider the remaining

events as independent probabilities on draws of a student s from Pén):

Since Pén) is uniform over permutations of students, Pr [E(")

n Sn)|—2
o Br[ED ] = (Plo =, e Plo =, e | @ =y ar]) 571

o Pr [E(") } = Pyfry(ca) = 1] - Py[rs(c1) = 2| ro(c) = 1]

[c1381]
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[c1;82]

. Pr[E(”) } = P,[rs(c1) = 1] - Py[rs(c2) = 2 | 15(c1) = 1] .

So, noting that for different selections of (s1, 2, c2) the events E® (s1,82,c1,C2)

are disjoint and that there are @

81 >¢, S2, see:

draws of (s1, s2) such that s; # s9 and

D DR A B 1z B
c2€CM\{ca}

:n(n4—1) Byfry(er) = 1] - B2 = ] 157172)
Z <Ps[rs(02) =1]

2eC\{a1} . P =, ¢y | D = cl](‘s(")‘_Q)
- Py[rs(c1) = 2| rs(ea) = 1]

- Plrg(c2) =2 | r5(eq) = 1]>
(C.1)

We can use this expression to derive from preference structure a bound
on the expected number of colleges (and students) with more than one stable
match.

C.1.1 Uniform students, ex ante equipopular colleges

Say that colleges are ex ante equipopula in market T’ = (C,S,Pc,q,Ps)

if
1

i = —
] |C‘ 9
1. e., if each college is equally likely to appear in each position in a student’s
preference list.

Vi e {0,...,k},Vee C,Vs € S, Ps[rs(c) = (C.2)

Let (f("))n N be a (k,q)-regular sequence of random one-to-one markets

with colleges ex ante equipopular and Pén) the uniform distribution over

permutations of S, Consider T = (C(”),S(”),Pén),q(”),Pén)). Then

Z8Note that ez ante equipopularity allows for correlations within a students’ rankings
of different colleges, and is a weaker condition than ez ante symmetry (as it allows for
asymmetries in correlation structure).
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note that Py[@ = ca | @ =4 c1] > =2k and so:

n

Pr[EM] >M L 1— E\ @n-2)
-4 n n
1

) (1 _ Zk> (@n—2)
n n

- Pyrs(e1) = 2| rs(c2) = 1]

Pulr(e2) = 2 | ry(er) = 1]), (C.3)
which in the n — oo limit is:

lim Pr[EgL)] > exp[—3gk]

n—00 4

X (Pl =2l (e =1

coeC()

- Pylrs(c2) =2 | r5(cr1) = 1]> (C.4)

Define the stochastic operator A := [Pulrs(ci) = 2 | 15(cy) = 1]]1.3..
Then note:

((A(n))T(A(”)))clcl = Z (Ps[rs(cl) =2 |rs(co) = 1]

c2 eC(n)

- Pglrs(ea) =2 | rs(c1) = 1]) (C.5)
and

~p/—
Tim Efce ™ EM] > Wnlggo Te((A™)7 (™). (C6)
That is, we can express a sufficient condition that a market exhibits non-
vanishing market power (under the above regularity and uniformity assump-
tions) as a spectral condition the matrix of first- and second-choice colleges
by students.

As an example, we can demonstrate non-vanishing market power in the
setup of Theorem by noting ex ante equipopularity, regularity, uni-
formity of colleges’ preferences, and that Tr((A(”))T(A("))) = 7, implying
that the expected fraction of colleges with more than one stable match is
non-vanishing.

2albeit with a weaker bound in terms of k and §
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C.2 Locality in network structure

Modeling locality in inter-agent networks was an early motivation for ran-
dom graph models that generalized uniform (Gilbert (1959); Erdés and
Rényi| (1960)) and homogeneous power-law (Barabdsi and Albert| (1999); AL
bert and Barabasi (2000))) network models. For the results in the main text, I
considered an analogue of a synthetic locality model presented by
, which mixed an Erdés—Rényi uniform graph model with a
regular ring lattice. In the network-structure literature, locality was also in-
troduced to generative models via variation to their sequential-attachment
mechanisms (Kleinberg et al| (1999); Kumar et al.| (2000); Leskovec et al,
(2005))). Further work has refined the modeling of locality structure in both
synthetic (Leskovec et al.| (2010)) and ad-hoc (Yang and Leskovec| (2014)))
network models.

The locality condition established above is a form of subgraph density
condition on the ordered, directed graph of agent preferences, similar to
the triangle-counting interpretation of network locality in undirected graphs
(Wasserman and Faust| (1994)). As such, a number of proposed models
from the network-structure literature have preference-structure analogues
that exhibit non-vanishing locality, in the above sense:

e lattice mixture models (Watts and Strogatz (1998)), as introduced in
the main text,

e geography-based models (Jin et al| (2000)),

e copying-based (Kleinberg et al.[(1999); Kumar et al|(2000))) and prototype-

copying-based (Leskovec et al.| (2005)) preferential attachment models,

e Kronecker-product models (Chakrabarti et al.| (2004); Leskovec et al.|

(2010)),

e community-attribute models (Yang and Leskovec| (2014))).

I anticipate scope for future work to investigate the applicability of net-
work models to modeling preference structure in matching markets—and
the matching-market properties that they influence.
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