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Abstract—Previous work by Aaronson[1] and others has
established the complexity class PostBQP, the class of
problems efficiently solvable (with bounded error) by a
quantum computer, given the ability to “postselect” on the
outcomes of subpolynomial measurements. Recent work
by Kuperberg[2] has revealed desirable refinements to the
original formulation of the class, namely, the restriction
of the power of postselection to outcomes of probabil-
ity Ω(exp(−poly(n))). We survey results bounding, for
particular gatesets, the rate at which amplitudes shrink
asymptotically in number of gates applied. Most relevantly
for PostBQP, we survey several sufficient conditions on a
gateset Γ for PostBQPΓ = PostBQP (especially regarding
Aaronson’s formulation of ‘tameness’), compare the es-
sential ideas of certain extant proofs of a central relevant
theorem in tameness, and provide minor results concerning
the rate at which amplitudes shrink while applying known-
to-be-tame gates after a constant number of not-known-to-
be-tame ones. In this latter paradigm, we find that ‘most’
gates do not create fast-shrinking amplitudes after only a
constant number of applications.

I. CONTEXT AND RELATED WORK

‘Postselection’ is a hypothetical power in proba-
bilistic computing, allowing one to discard all runs
of a computation in which a given (random) event
does not occur. It was introduced by that name in
a 2005 paper by Aaronson[1], who proposed it as a
way to ask about the power of quatum computation
under slightly different quantum mechanics (as, say,
a way of understanding where exactly ‘the power of
quantum computation comes from’), but who later
also proved it classically useful when he demon-
strated in the same paper PostBQP = PP, and, as
a corollary, a simple proof that PP was closed under
intersection.

Others have used expanded upon the concept of
postselection, either applying it to other complexity

classes than BQP[3], or by using PostBQP = PP
as a Rosetta Stone of sorts, to translate certain quan-
tum results into e.g. the implied collapse of the poly-
nomial hierarchy under certain hypotheses[4][5].

Unfortunately, recent work by Kuperberg re-
vealed certain unjustified assumptions in Aaron-
son’s original formulation[2], most notably the
assumption of gateset-independence. By way of
resolution, Kuperberg has proposed that we use
“PostBQP” to refer to the class with postselection
limited to outcomes with probability of occurrence
Ω(exp(−poly(n))); with this formulation, Aaron-
son’s original proofs of, inter alia, PostBQP = PP
are valid as stated. However, it is currently an open
problem whether or not the ability to postselect on
sub-singly-exponential outcomes creates a separably
stronger complexity class than the one obtained
with this restriction, and we have no definitive
results on this question to present (beyond the
mention here of an obvious oracle relative to which
separation can be demonstrated).

We will, however, survey the work of Kuper-
berg and others on the question of whether we
can prevent the occurrence of any possible out-
comes of probability o(exp(−poly(n))) by suitable
restriction on the gateset, thus allowing, within
PostBQP, postselection on any nonzero outcome,
since such outcome will necessarily have probability
Ω(exp(−poly(n))). We present Aaronson’s formu-
lation of ‘tameness’, a useful such characterization
in terms of the set of transition amplitudes, in
section III (we also provide our own formulation of
‘very-tame-ness’, which captures most known cases
of tameness with a tighter bound), and in section
IV provide a few illustrative examples of very tame,
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tame and non-tame sets. In section V, we provide
an exposition of Kuperberg’s main result on the
tameness of algebraic sets, as well as alternative
proofs expressing the same concepts in the language
of other mathematical fields.

We present new formulations of tameness in the
language of transcendence theory (i.e. transcenden-
tal number theory) in section VI, along with minor
novel results regarding not-known-to-be-tame num-
bers (or, alternatively, gates) which do not allow for
non-tame blowups when applied a constant number
of times amid many applications of others known
to be tame. In section VII, we list a few questions
which remain open.

II. TAMENESS: A MATHEMATICAL
FORMULATION

This formulation of ‘tameness’ was proposed
by Aaronson on MathOverflow[6]. The addition of
‘very tame’ is ours.

Let A := a1, . . . , ar be a fixed, finite set of
Real ai ∈ [−1, 1]. Such a set ‘expresses’ (‘in n
applications’) the elements of the set

SA(n) :=

{
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣ ai(j,k) ∈ A {−1, 0, 1}

}
,

(1)
i.e. 2n-sums of n-products of arbitrary ai ∈ A ∪
{−1, 0, 1}. (Including 0, 1 allows our sums and
products to be “up to. . . ” without loss of gener-
ality.) We’re particularly interested in the smallest-
absolute-value nonzero A-expressible number:

dA(n) := min
x∈S∗

A(n)
{|x|} , (2)

(where S∗A(n) := SA(n)\ {0}) and in particular,
just how quickly it shrinks as n increases (asymp-
totically speaking). In particular, it will be useful
to discuss the quantity − log dA(n) as a function
fA : N→ R:

fA(n) := − log dA(n). (3)

Definition. We say that a set A is tame iff fA(n) =
O(poly(n)), and non-tame otherwise. Iff fA(n) =
O(n), we say A is very tame.

Tameness is of interest primarily because it is a
sufficient condition for PostBQPΓ = PostBQP that

AΓ := {a | a is a transition amplitude of a gate g ∈ Γ}
(4)

is tame.

III. EXAMPLES OF (NON-)TAMENESS

In this section, we give a few illustrative examples
of very tame, tame and non-tame A.

A. A = {1/2} (very tame)

Let A := {1/2}. Then any
∏n

k ai(k) takes the form
2−` for some ` ≤ n, and elements of SA(n) take the
form h/2` for ` ≤ n. The minimal number of this
form is

dA(n) = 1/2n = 2−n, (5)

so fA(n) = n, and A is very tame.

B. A ∈ Qr (very tame)

Let A := {a1, . . . , ar} = {p1/q1, . . . , pr/qr}, with
pi, qi ∈ Z. Then any

∏n
k ai(k) takes the form

n∏
k

ai(k) =

∏n
k pi(k)∏n
k qi(k)

=

∏r
i p

ei
i∏r

i q
ei
i

(6)

for some ei such that
∑

i ei = n, and elements s ∈
SA(n) take the form

s =
2n∑
j

n∏
k

ai(j,k) =
2n∑
j

∏r
i p

ej,i
i∏r

i q
ej,i
i

=
h∏r

i q
maxj ej,i

,

(7)

where h is some polynomial in Z[xi, yi]. Note that
∀i,maxj ej,i ≤ n; then the least nonzero element
is bounded below by letting h = 1 and every
maxj ej,i = n:

dA ≥
1∏r
i y

n
= 2−n

∑r
i log yi , (8)

so fA(n) ≤ n
∑r

i log yi = O(n), and A is very
tame.

C. Arbitrarily non-tame A

A particular case of this construction was given
by Achinger on MathOverflow[7] in response to
Aaronson’s question, demonstrating the existence of
non-tame A. The simple generalization to ‘arbitrar-
ily non-tame’ A is ours.

Claim III.1. Let g : N → N be some abritrary
function (for convenience, we will assume g(n) >
n). Then there is an A such that fA(n) 6= O(g(n)).
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Consider, for this purpose, A =
{

1/2,
∑

i 2
−G(i)

}
,

where G(0) := 1 (or any appropriate initial condi-
tion) and G(n + 1) := g(G(n)). Then, at least for
n ∈ G(N),

dA(G(n)) ≤
∑
i

2−G(i) −
n∑
i

2−G(i)

=
∑
i=n+1

2−G(i)

≤ 2 · 2−G(n+1)

= 2 · 2−g(G(n)), (9)

so fA(n) ≥ g(n)−1 whenever n ∈ G(N), and, since
G(N) includes arbitrarily large elements whenever
g = Ω(n), fA(n) 6= O(g).

Letting g(n) := 2n, then, we show that there
exist non-tame A.1 Such constructions, which for
g(n) = ω(n) involve a necessarily transcendent sec-
ond element, have interpretations in transcendence
theory, which are discussed in section VI below.

IV. ALGEBRAIC RESULTS

Having observed the existence of both tame and
arbitrarily non-tame A, the natural next question
is: “What conditions on the ai are necessary or
sufficient for the tameness of A?” In this section,
we survey three extant proofs of the tameness of
algebraic sets, i.e. the following theorem:

Theorem IV.1. (Algebraic Tameness Theorem) Let
A := {a1, . . . , ar}, with all ai algebraic. Then A is
very tame.

By examples above, this bound is tight.
Unsurprisingly, the three proofs discussed are

effectively equivalent from a sufficiently general
perspective, and follow the basic form:
• Let our ai generate some finite algebraic field

extension K ⊇ Q.
• Bound below the quantity∏

σi:K↪→C

|σis|C , (10)

where s is the amplitude under investigation
and σ runs over the embeddings K ↪→ C.

1Letting g(n) := n2, by contrast, we find a not-very-tame A. If,
as we suspect but cannot here prove, the bound on this A is tight, it
gives the example of a tame A which is not very tame.

• Bound above the |σis|C, similarly bounding
below each (but most importantly for our pur-
poses, the natural embedding).

For readers who prefer explicit formalizations in
one theory or another, we survey three different
formulations of the proof, which express the above
idea in the language of valuation theory, linear
algebra, and Galois theory, respectively. But first,
a short note about the theorem’s implications:

A. Applications of the Algebraic Tameness Theorem

Since the Hadamard and Toffoli gates ex-
hibit only algebraic transition amplitudes (namely
{0, 1, 1/

√
2}), no possible outcome of a Hadamard-

Toffoli circuit is less likely than Ω(2−n). So
PostBQP{H,CCNOT} = PostBQP, for PostBQP
as refined by Kuperberg[2]. Since {H,CCNOT}
is universal for PostBQP, this implies, speaking
colloquially, that any postselection algorithm that
isn’t making explicit use of gateset peculiarities
should be no stronger than PostBQP.

B. Proof In Valuation Theory, by Rosen

This proof was provided by Rosen on
MathOverflow[8] in response to Aaronson’s
question. Proofs of certain elementary lemmas,
or surveys of such proofs provided elsewhere, are
ours.

Let A := {a1, . . . , ar} be a finite set of algebraic
numbers, and let K := Q(a1, . . . , ar) be a number
field containing them (along with, necessarily, all
rationals). Then a standard result in valuation theory
(proved in Appendix A) is

∀x ∈ K∗,
∏
v

|x|v = 1 (11)∑
v

log |x|v = 0, (12)

where v runs over (normalized) places on K. Then,
letting v0 be the place from the natural embedding
of K in R, i.e. the absolute value of an element so
embedded, we see

− log |x|v0 =
∑
v 6=v0

log |x|v (13)

and so, we can bound above the left side by bound-
ing above the right.
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Considering |ai|v for fixed
{
ai = pi

qi

}
(with rela-

tively prime pi, qi ∈ Z[α1, . . . , αs] for suitable inde-
pendent algebraic roots αj) over non-Archimedian
places v, we see

|ai|v > 1⇐⇒ v
∣∣qi, (14)

and so, since qi has a finite set of divisors, there
exists a finite set of places Pai :=

{
z ∈ K∗

∣∣ z∣∣qi}
such that

v ∈ Pai ⇐⇒ log |ai|v > 0. (15)

Then, seeing that

log

∣∣∣∣∣
n∏
k

ai(k)

∣∣∣∣∣
v

= log
n∏
k

∣∣∣ai(k)∣∣∣
v

=
n∑
k

log
∣∣∣ai(k)∣∣∣

v
, (16)

we conclude

log

∣∣∣∣∣
n∏
k

ai(k)

∣∣∣∣∣
v

> 0⇐⇒ v ∈
s⋃
i

Pai . (17)

Defining PA := Parch∪
⋃s
i Pai (which is finite, since

the finiteness of the extension implies finiteness of
Parch), we see

log

∣∣∣∣∣
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣
v

> 0⇐⇒ v ∈ PA, (18)

and so reduce the infinite-sum bound above to the
finite-sum bound

− log |x|v0 ≤
∑
v∈P ∗

A

log |x|v , (19)

where P ∗A := PA\ {v0}.
Since, for fixed v, log max

x∈SA(n)
{|x|v} = O(n)

(proof in Appendix B), we see

fA(n) = max
x∈SA(n)

{
− log |x|v0

}
≤ max

x∈SA(n)

∑
v∈P ∗

A

log |x|v


≤
∑
v∈P ∗

A

max
x∈SA(n)

{log |x|v}

≤ |P ∗A|O(n)

= O(n). (20)

C. Proof In Linear Algebra, by Sawin
This proof was provided by Sawin on

MathOverflow[9] in response to Aaronson’s
question.

The abstract-algebraic ideas of Rosen’s proof can
be expressed in linear-algebraic terms, for readers
who find such formulations more intuitive:

Consider the d-degree field extension K =
Q[α1, . . . , αs] ⊇ Q as a d-degree vector space over
Q; then we can express multiplication by any x ∈ K
as an operator linear in the basis elements, so linear
K → K. So identify it with a matrix with entries in
Q and note that the natural real absolute value of an
element is given by the eigenvalue corresponding to
the eigenvector (|e1|−1

σ0
, . . . , |ed|−1

σ0
), where |e1|σ0 is

the real absolute value of (1, 0, . . . , 0) and |ed|σ0 is
the real absolute value of (0, . . . , 0, 1), etc.

NB: The essential relation to Kuperberg’s proof
(below, in V.D) here is that the other eigenvectors
are similarly of the form (. . . , |ei|−1

σj
, . . .), for σj

some other embedding K ↪→ C, and the determi-
nant, naturally, is their product.

We quote the remainder of Sawin’s proof:
We can lower bound it by lower bounding
the determinant and upper bounding the
other eigenvalues. Observe:

The entries grow at most exponentially,
so the other eigenvalues grow at most
exponentially. Because the number field
is a field, the element is invertible, so the
determinant is nonzero. The denominators
of the entries grow at most exponentially,
so the denominator of the determinant
grows at most exponentially.

Then you get a lower bound on one eigen-
value by division and the fact that the
numerator of the determinant must be at
least 1.[9]

D. Proof in Galois Theory, by Kuperberg
This proof is given by Kuperberg[2]. His proof

is more succint, but we are slightly more careful
here to prove very-tame-ness where he only proved
tameness.

Given a n-degree Q-polynomial in r algebraic
variables ai (which together generate a finite ex-
tension K ⊃ Q of degree d), we have by the
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Primitive Element Theorem of Galois that K has
some primitive root α, i.e. each ai is epxressible as
some d-degree polynomial qi(α). So it suffices to
consider r = 1 (and, say, a1 = α), n increasing
only by a linear factor of d.

Then let α2, . . . , αd be distinct Galois conjugates
of α (i.e. replacing α with one of them gives us
a different embedding K ↪→ C). Note then that
each |p(αi)| is bounded above by |αi|n 2nPmax, for
Pmax the largest coefficient in p, itself bounded by
(Qn

Σ2n), for QΣ the sum of all coefficients in the qi
above.

The product

q′
(
x1

y1

, . . . ,
xd
yd

)
:=

d∏
i

p(αi) (21)

is some rational polynomial of degree d deg(p) in
x1
y1
, . . . , xd

yd
the rational coordinates of α; since the

arguments are fixed, we can bound it below (in
absolute value) by

(∏d
i yi

)−n
Plcm for Plcm the least

common multiple in the denominators of the coef-
ficients in p, itself bounded below by (Qlcm)−n, for
Qlcm the least common multiple of all coefficients
in the qi above.

So, for some p of degree n, we bound |p(α)|
below by 2Ω(n) with the bounds∣∣∣∣∣

d∏
i

p(αi)

∣∣∣∣∣ = 2Ω(n) (22)

∀i, |p(αi)| = 2O(n). (23)

V. TRANSCENDENCE RESULTS

A. A Brief Layover in Liouville
A Liouville number α has the property

∀r,∃p/q ∈ Q :

∣∣∣∣α− p

q

∣∣∣∣ < 1

qr
; (24)

in fact, this ∃ finds infinitely many distinct p/q
(Proof: Note that any particular p/q approximates
only to q−R only for some finite R, and take the
p′/q′ given for r = R + 1. Repeat.), and we call
this ability to be approximated to within q−r by
infinitely many p/q “r-approximability”. Similarly,
non-Liouville numbers β can be assigned a finite
irrationality coefficient µ(β) ∈ R+ by

µ(β) := inf {r ∈ R+ | α is r-approximable} .
(25)

(It is conventional to assign Liouville numbers α an
irrationality coefficient of ∞.)

It follows readily that p/q ∈ Q =⇒ µ(p/q) =
1, and the Thue-Siegel-Roth Theorem states that
β is algebraic =⇒ µ(β) = 2. Note, however, that
this is not biconditional—there are transcendental γ
such that µ(γ) = 2, and in fact, {γ ∈ R | µ(γ) > 2}
is a set of measure zero in R.

B. Applied Irrationality

In demonstrating the existence of arbitrarily non-
tame A above, we saw that, by using only a single
application of one transcendent gate and several
applications of a rational one—a small piece of the
expressivity of our sum-product form—we could
produce amplitudes which shrank arbitrarily fast.
Thus inspired, we define

dαa (n) := min((αS{a}(n) + S{a}(n))\ {0}) (26)
fαa (n) := − log daα, (27)

which denotes the minimal amplitude (or the loga-
rithm of its shrinkage) after one application of the
α gate and n applications of the a gate. A little
more suggestively, we attempt to capture whether a
number has an ‘bounded’ or ‘unbounded’ amount of
non-tameness by considering whether or not a sin-
gle application can make otherwise tame numbers
non-tame, even as the fraction of otherwise-tame
numbers applied approaches 1 without bound.
Definition. We say that a number α is safe (for
one application) iff fαA(n) = O(poly(n)) for any
algebraic2 A, and non-safe otherwise. Iff fαA(n) =
O(poly(n)), we say α is very safe.

In general, f{a,α} = Ω(fαa ), and our results from
section IV above can be written thus

fA = Ω

(
f

(
∑
i 2−G(i))

1/2

)
6= O(g). (28)

i.e. there exist α which are arbitrarily unsafe, even
for a single application.

We also have the theorem:

Theorem V.1. fα1/2(n) 6= O(n1+ε) =⇒ µ(α) =∞.

Corollary V.1. µ(α) <∞ =⇒ fα1/2(n) = Õ(n).

2We might instead define this for tame A, but it is unclear at this
time how and if that condition differs from algebraicity, and in any
case, we find things easier to prove in this formulation, the existence
of which is otherwise only conjectured.
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(proved in Appendix C) So safeness is a more
general condition than non-Liouville-ness—that is,
while our examples of non-safeness involve an ap-
plication of some Liouville α and its approximation
by dyadics, the Liouville-ness of α is insufficient to
produce non-safeness, and in ‘most’ cases only pro-
duces non-very-safeness. Note, however, that safe-
ness is also a more general condition than tameness,
so this result does not resolve whether tameness is
or more or less general than non-Liouville-ness.

At a minimum, though, it does imply that several
constants of known-bounded irrationality[10] are
safe for at least one application, including e−1, π−1,
π−2, (ln 2)−1, (ln 3)−1, (ζ3)−1, after noting that the
Liouville-Roth coefficient is invariant under Möbius
transforms[11].

C. Unsafe Unions
Unforuntately, this result (that non-Liouville-ness

of α guarantees very-safeness) is not robust under
the obvious set-union. If we take α, β such that
fα1/2(n), fβ1/2(n) = O(n), it is nevertheless possible
for fα,β1/2 (defined with one application each of
α, β and n applications of 1/2) to grow arbitrarily
quickly!
Example. Fix some arbitrarily-unsafe γ (say, :=∑

i 2
−G(i) for some fast-growing g), and consider

(α, β) of the form (α, γ − α). Since α with
µ(α) > 2 have measure zero in R, so too does
{α ∈ R | µ(α) > 2 or µ(γ − α) > 2}; so both el-
ements of this tuple have µ(∗) = 2 for almost
all α—it follows that fα1/2(n), fβ1/2(n) = O(n). But
γ = α + β by construction, so γ ∈ Sα,β1/2 (n), so
fα,β1/2 (n) 6= O(g).

This construction, interestingly enough, works
even if:
• the only gates corresponding to α and β are

applied once each on (at the time) unentangled
registers (using the above (α, γ − α)),

• the only gates corresponding to α and β are
single-wire gates applied once each, immedi-
ately after one another on the same wire (using
(α, γ/α) with similar measure-theoretic proof).

D. Recovering the Single-α Case for (Constant)
Multiple Applications

So two gates which are (very) safe individually
can be combined to produce a set which is arbi-
trarily non-safe after only a single application of

each—can the same be true of a (very) safe gate
and itself ? i.e. slightly more generally: if α is safe
for a single application, is it safe for some constant
number of applications? In terms of transcendence
theory, we might make the following conjectures:

Conjecture V.1. (Weak Form) µ(α) < ∞ =⇒
µ(p(α)) <∞, for any polynomial p.

Conjecture V.2. (Strong Form) µ(α) ≥ µ(p(α)),
for any polynomial p.

This says, intuitively, that we cannot make a
number ‘more irrational’ by mapping it by some
polynomial. (The version restricted to algebraic
and rational numbers is quite obviously true.) The
disproofs of additive and multiplicative closure in
general don’t apply here to, say, tuples (α, p(α)),
as they require enforcing a different dependence be-
tween the elements than the algebraic one requested
here. However, we do not at this time have a proof;
see VI.E for the best alternative we are prepared to
present.

E. The Single-α Case in Probability

Theorem V.2. For a real α chosen uniformly at ran-
dom on some interval, with probability 1, µ(p(α)) ≤
2 for all finite-degree polynomials p with algebraic
coefficients.3

Corollary V.2. The theorem holds for real α chosen
at random from any uniformly continuous distribu-
tion on R.

The corollary means, among other things, that
if we choose an angle θ uniformly at random
from some interval, and let a1, . . . , ar be algebraics,
then sin θ is, with probability 1, very safe for any
constant number of applications.

In fact, they both generalize to the s-dimensional
case:

Theorem V.3. For a real (α1, . . . , αs) chosen uni-
formly at random on [0, 1]s, with probability 1,
µ(p(α1, . . . , αs)) ≤ 2 for all finite-degree polyno-
mials p with algebraic coefficients.

Corollary V.3. The theorem holds for vectors cho-
sen at random from any uniformly continuous dis-
tribution on Rs.

3Obviously, the stronger statement of this theorem is µ(p(α)) ≤ 2;
here we express it as an upper bound for clarity.
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Here we prove the first theorem; we’ll address its
extensions to the other claims in Appendix D.
Outline of proof: It suffices to consider nonconstant
algebraic-coefficient polynomials, of which there
are only countably many. For each such p, each
z ∈ R is expressible as p(x) for only finitely many
distinct x. So the set of x which can be mapped
into some y with µ(y) > 2 is the sum of at most
countably many images of {y | µ(y) > 2} under
almost everywhere absolutely continuous mappings,
and so has measure zero.

Proof. It suffices to consider nonconstant algebraic-
coefficient polynomials, of which there are only
countably many. (Recall that there are only count-
ably many algebraic numbers.) For each such pi and
arbitrary c ∈ {1, . . . , |pi|}, define qi,c :

qi,c(y) :=
(
p−1(y)

)
min{c,#p−1(y)} , (29)

i.e. the inverse of p−1(y) at points where the preim-
age has only 1 point, and at all others either the
cth-least preimage point, or the greatest preimage
point (if c is greater than the cardinality of the
preimage). Such functions are almost everywhere
absolutely continuous. Then, if y = pi(x) for some
pi, we have qi,c(y) = x for some c. So define B:

B :=
⋃
i

d⋃
c

qi,c {y | µ(y) > 2} , (30)

the set of points which are mapped into some y with
high Liouville-Roth coefficient by some algebraic-
coefficient polynomial of degree ≤ d. Then, since
the latter set has measure zero, it is mapped by each
(a.e.a.c.) q to a set of measure zero, and the union-
set has measure zero by the countable subadditivity
of measure.

VI. STILL-OPEN QUESTIONS

While PostBQP is not really new, the restric-
tion of postselection to outcomes of probability
Ω(exp(−poly(n))) is. Various questions remain
open, which we present here by way of conclusion,
without commentary:
• Are there gatesets Γ for which PostBQPΓ )

PostBQP?
• Are there reasonable gatesets with non-tame

transition amplitudes which are nonetheless
tame? (i.e. when actually built into circuits)

• Are there sufficient conditions for tameness
more general than algebraicity?

• Are there useful nonobvious conditions for
safeness? (either in one or multiple αi)

• Conjectures VI.1 and VI.2: Does safeness for
one application imply safeness for d applica-
tions?

• Are there useful generalizations of safeness to
e.g. safeness for log n applications?

• What further quantum-algorithmic questions
rely on answers to these questions in tame-
ness/safeness?
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APPENDIX A
PROOF: PRODUCT RULE ON VALUATIONS

Proposition A.1. Let K be a finite extension of Q.
Then ∀x ∈ K,

∏
v |x|v = 1, letting v run over the

(normalized) valuations of primes on K.

We begin by proving the case K = Q:

Lemma A.1. ∀x ∈ Q,
∏

v |x|v = 1.

Proof. Note that this product formula is a homo-
morphism over multiplication, i.e. that∏

v

|xy|v =

(∏
v

|x|v

)(∏
v

|y|v

)
, (31)

so it suffices to prove the claim for prime and unit
x. Note then that, on units,∏

v

|x|v =
∏
v

1 = 1 (32)

4Quantum Complexity Theory Student Project Showcase 3. Shtetl-
Optimized http://www.scottaaronson.com/blog/?p=2109
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and on primes,∏
v

|x|v = |x|x · |x|∞ ·
∏

v/∈{x,∞}

|x|v

= x−1 · x ·
∏

v/∈{x,∞}

1

= 1, (33)

as desired.

We then proceed to prove the original proposition
for general K a finite extension of Q.

Proof.∏
v∈val(K)

|x|v =
∏

p∈Spec(K)

|x|p

=
∏

q∈Spec(Q)

∣∣∣‖x‖K/Q∣∣∣1/[K:Q]

q
(∗)

=

 ∏
q∈Spec(Q)

∣∣∣‖x‖K/Q∣∣∣
q

1/[K:Q]

=

 ∏
v∈val(Q)

∣∣∣‖x‖K/Q∣∣∣
q

1/[K:Q]

= 11/[K:Q] (by 32)
= 1 (34)

∗: The second step follows from the definition of
‖·‖K/Q:

‖x‖K/Q :=
∏

σi:K↪→C

|σix|C , (35)

which should be reminiscent of the other proofs
above. Readers seeking a deeper understanding of
the details should refer to a text in algebraic number
theory. We consulted lecture notes from Milne’s
course at Michigan[12] for this purpose.

APPENDIX B
PROOF: |xn|v = 2O(n)

For any fixed v, we note the bound
log max

x∈SA(n)
{|x|v} = O(n) in both the Archimedian

case:

s ∈ SA(n) =⇒ log |s|v = log

∣∣∣∣∣
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣
v

≤ log 2n

∣∣∣∣∣
n∏
k

|·|v
max
j
ai(j,k)

∣∣∣∣∣
v

= n+ log
n∏
k

max
j

{∣∣∣ai(j,k)∣∣∣
v

}
≤ n+

n∑
k

log max
i
{|ai|v}

≤ n+ n log max
i
{|ai|v}

= O(n) (36)

and the non-Archimedian:

s ∈ SA(n) =⇒ log |s|v = log

∣∣∣∣∣
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣
v

≤ log

∣∣∣∣∣
n∏
k

|·|v
max
j

{
ai(j,k)

}∣∣∣∣∣
v

≤ log
n∏
k

max
j

∣∣∣ai(j,k)∣∣∣
v

≤
n∑
k

log max
i
|ai|v

= n log max
i
|ai|v

= O(n). (37)

APPENDIX C
PROOF: fα1/2(n) 6= O(n1+ε) =⇒ µ(α) =∞

Fix some positive ε; then, by hypothesis, there
exist infinitely many n such that

− log
∣∣∣αqn

2n
− pn

2n

∣∣∣ > n1+ε∣∣∣αqn
2n
− pn

2n

∣∣∣ < 1

2n1+ε∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qn2n1+ε−n . (38)
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But, noting for any fixed r that n1+ε−n = Ω(n(r−
1)), we can choose sufficiently large n such that∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qn2n1+ε−n (by 37)

<
1

qn2n(r−1)
(for n sufficiently large)

≤ 1

qnqr−1
n

( qn
2n
≤ 1 =⇒ qn ≤ 2n)

=
1

qrn
, (39)

so µ(α) = ∞. The corollary follows contraposi-
tively.

APPENDIX D
EXTENSIONS OF THEOREM VI.2

From Theorem VI.2, we prove Corollary VI.2:

Proof. Let X be a uniformly continuous probability
distribution; let F : R→ [0, 1] be its CDF, which is
thus absolutely continuous. (Proof: By a theorem of
Lesbegue, any measure can be decomposed into an
absolutely continuous part, a singular part, and an
atomic part. But X has neither of the latter two, by
its uniform continuity. So the integral with respect to
its measure, i.e. its CDF, is absolutely continuous.)
Define B ⊆ R:

B := {α ∈ R | ∃p : µ(p(α)) > 2} , (40)

for some polynomial p. Then, by the probability
integral transform, we have

P (X ∈ B) = P (F−1(U) ∈ B), (41)

where U ∼ Unif[0, 1]. Note F−1(U) ∈ B ⇐⇒ U ∈
F (B), so

P (F−1(U) ∈ B) = P (U ∈ F (B)) (42)

But since B has measure zero, it has measure zero
under any absolutely continuous mapping. Thus
F (B) has measure zero, and P (U ∈ F (B)) =
0.

We prove the second theorem by reducing to
the first: Note again that it suffices to consider
nonconstant pi, note that there exist countably many
such polynomials, that each produces an at most
(s−1)-dimensional manifold ⊂ Rs as the preimage
of any point y. So, for almost all αs, the preimage
of any point y is an (s− 2)-dimensional manifold.

By finite induction, we reduce to the s = 1 case
with probability 1.

We prove the second corollary from the second
theorem by identical argument to the first.

APPENDIX E
THE NUMBER ZOO

For the reader’s reference, we summarize here
important fixtures in the hierarchy of tame-
ness/safeness, and state a few facts, either com-
mon results or consolidations of results surveyed or
proven here. For conciseness, we omit “or above”
and “or below” when obviated by the inclusion
relations.

Q ( Q (43)
( {γ | µ(γ) = 2} (44)
( {β | µ(β) <∞} = Lc (45)

(
{
α
∣∣∣ f {α}(d)
{a1,...,ar}(n) = O(n)

}
(46)

• The first line has measure 0, as does the com-
plement of the second. (Lc is the complement
of the Liouville numbers.)

• The first line is countable; the second is un-
countable. All lines have uncountable comple-
ment.

• Sets of numbers from the first line are known
to be very tame.

• With probability 1, sets of numbers from any
line are known to be very safe for d applica-
tions.

• There exist pairs of numbers from the second
line, each individually safe for d applications,
which together are arbitrarily unsafe for one
application each. Such pairs, however, have
measure zero in R2.
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